
A Time-Scale Decomposition Approach to Statistically Downscale Summer Rainfall
over North China

YAN GUO

State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of

Atmospheric Physics, Chinese Academy of Sciences, and Graduate University of Chinese Academy of Sciences, and

Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing, China

JIANPING LI

State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of

Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

YUN LI

CSIRO Mathematics, Informatics and Statistics, Wembley, Western Australia, Australia

(Manuscript received 31 December 2010, in final form 2 June 2011)

ABSTRACT

A time-scale decomposition (TSD) approach to statistically downscale summer rainfall over North China is

described. It makes use of two distinct downscaling models respectively corresponding to the interannual and

interdecadal rainfall variability. The two models were developed based on objective downscaling scheme that

1) identifies potential predictors based on correlation analysis between rainfall and considered climatic

variables over the global scale and 2) selects the ‘‘optimal’’ predictors from the identified potential predictors

via cross-validation-based stepwise regression. The downscaling model for the interannual rainfall variability

is linked to El Niño–Southern Oscillation and the 850-hPa meridional wind over East China, while the one for

the interdecadal rainfall variability is related to the sea level pressure over the southwest Indian Ocean.

Taking the downscaled interannual and interdecadal components together the downscaled total rainfall was

obtained. The results show that the TSD approach achieved a good skill to predict the observed rainfall with

the correlation coefficient of 0.82 in the independent validation period. The authors further apply the model

to obtain downscaled rainfall projections from three climate models under present climate and the A1B

emission scenario in future. The resulting downscaled values provide a closer representation of the obser-

vation than the raw climate model simulations in the present climate; for the near future, climate models

simulated a slight decrease in rainfall, while the downscaled values tend to be slightly higher than the present

state.

1. Introduction

In the past decades, global climate has undergone rapid

changes as it has been approved by documented obser-

vation in every continent (Solomon et al. 2007). Pro-

jection for future climate (e.g., rainfall) and its associated

influences on environment and society (e.g., runoff and

water storages) have attracted growing attentions world-

wide. However, uncertainties in projected rainfall changes

for later this century plague estimates of impacts on

future runoff and water storages (Milly et al. 2008). In

particular, there are several difficulties associated with

interpreting changes in variables simulated at a resolu-

tion of 100–200 km in terms of changes to be expected at

smaller catchment scales. There is an increasing demand

for more reliable estimates of these changes by water re-

source managers who need to make long-term decisions

about future infrastructure demands (e.g., new reservoirs,

pipelines, drainage, etc.). North China (NC; 1108–1228E,

358–408N) has already been severely affected by a downturn
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in rainfall and reductions in runoff and water shortage.

Problems of water shortage and related environmental

issues in NC have become the most significant limiting

factors affecting sustainable development in this impor-

tant region of China (Xia et al. 2007).

NC is located at the northern margin of East Asian

subtropical monsoon region and receives the bulk of

annual rainfall during the summer half-year (i.e., May–

October). Summer (July–August) rainfall over NC is

affected by both the teleconnected large-scale signals

and the regional signals. As for the teleconnected sig-

nals, El Niño–Southern Oscillation (ENSO) was repor-

ted to be associated with NC summer rainfall (Huang

and Wu 1989; Lu 2005; Wang et al. 2000; Wu and Li

2008); North Atlantic Oscillation (NAO) yields another

predictability source for the NC summer rainfall (Wu

et al. 2009, 2011). Additionally, the regional signals, such

as the components in the East Asian summer monsoon

(EASM) system (Huang et al. 2008; Li and Zeng 2002;

Yang and Sun 2003) and the mid-high-latitude circula-

tions over Eurasia (Wang et al. 2008; Zhao and Song

1999) also exert influence on NC summer rainfall. Lu

(2002, 2003) reported that there exists obviously distinct

variability at the interannual and interdecadal time scales

in NC summer rainfall. The strong high-frequency vari-

ability results in severe floods or droughts in NC (Huang

et al. 2006), while the low-frequency variability shows a

pronounced drying trend during the past half-century,

which has attracted great interests to find out the un-

derlying causes of the multidecadal drought over NC

(Ding et al. 2009; Li et al. 2010; Li et al. 2003; Sun 1999;

Zhou et al. 2009a). The extremely complex variability in

NC summer rainfall complicates its seasonal prediction

and long-term projections. This is an important issue in

terms of disaster prevention and mitigation and decision

making.

It is well-known that general circulation models

(GCMs) provide a good tool to project the large-scale

long-term mean future climate; however, the skillful spa-

tial resolution in most updated climate models is large

than or at least 2000–4000 km (Grotch and MacCracken

1991), beyond the demand for regional precipitation

prediction, which is sensitive to subgrid processes. The

physical parameterization schemes are critical for pre-

cipitation projection, and the limitation of parameteriza-

tion schemes in current climate models is also responsible

for the large uncertainties in rainfall simulations, even for

ensemble forecasts (Whetton et al. 2005).

Many approaches have been developed to overcome

the uncertainties accompanying future rainfall projec-

tions, including the assessment of the performance of

individual models as a guide to the reliability of their

predicted changes (Maxino et al. 2008; Perkins et al.

2007; Smith and Chandler 2009; Wu and Li 2009). Sta-

tistical downscaling is another method that can poten-

tially assist in the assessment of climate models. A simple

test for a model is that it cannot only provide an accurate

estimate for regional rainfall, but that it should also

simulate the observed relationship between regional

rainfall and other key variables, for example, sea level

pressure (SLP). If these criteria can be satisfied, simu-

lated changes in rainfall are more likely reliable than

otherwise. It cannot only provide an indication of any

such relationship, it can also potentially provide alterna-

tive estimates for rainfall changes if the model-simulated

changes in the key variables are believed to be more re-

liable than the rainfall estimates themselves (Benestad

2001).

Statistical downscaling is an empirical relationship be-

tween the large-scale climate anomalies and local climate

fluctuations based on historical data. There are numerous

ways to develop statistical downscaling models (Fowler

et al. 2007), but it is important to note that a statistical

downscaling approach assumes that any derived histori-

cal relationship also holds for the future (Wilby 1997).

Among various statistical downscaling models, mul-

tiple linear regression models built using gridcell values

of atmospheric variables as predictors for surface tem-

perature and precipitation are popular because of their

simplicity and explicit physical meaning (Benestad 2001;

Wilby 1998). Other more complex techniques include

using the principal components (PCs) of pressure fields

or geopotential height fields (Hanssen-Bauer and

Forland 1998; Kidson and Thompson 1998; Li and

Smith 2009) and more sophisticated methods such as

canonical correlation analyses (Busuioc et al. 2001;

Karl et al. 1990; Von Storch et al. 1993), singular

value decomposition (Zhu et al. 2008), and partial

least squares regression (Bergant and Kajfe-Bogataj

2005).

There is no doubt that the choice of predictors and the

associated domains plays a key role in statistical down-

scaling. An amount of sensitivity studies have indicated

that the choice of predictors and domains is critical for

future projections (Benestad 2001; Frias et al. 2006;

Schmidli et al. 2007). The commonly used predictors are

derived from circulation parameters, which could be

credibly simulated by GCMs, including SLP, geopotential

heights, horizontal winds at various levels, etc. For the

choice of predictor domains, its importance has been

indicated (Benestad 2001; Wilby and Wigley 2000), but

this issue of how to choose has not been systematically

addressed in the existing studies. The common approach

is to subjectively select a fixed domain that encompasses

the target location of the predictand (Oshima et al. 2002;

Timbal et al. 2003) or to select the best from several trial
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domains that surrounds the target location with con-

trasting locations and spatial extensions (Benestad 2001,

2002). Benestad (2004) first proposed a quantitative rule

to determine the spatial extent of domain surrounding

the target position. It examined the correlation map be-

tween climatic parameter over the target position and

the surrounding areas and defined the domain according

to where the correlation goes to zero. Nevertheless, this

proposition only considers the effect of the local and

nearby systems but misses the remote predictive signals

that exert an influence via teleconnection. Because the

teleconnection is an atmospheric phenomenon explained

by spherical planetary wave propagation theory (Hoskins

and Karoly 1981); consequently, the preceding or con-

current teleconnection signals is useful for statistical pre-

dictions. Therefore, it is intuitive to identify potential

predictors over the global scale.

The aim of this work is to build a statistical down-

scaling model for NC summer rainfall using an objective

approach that objectively selects potential predictors

over the global scale. Given that there are significantly

distinct components in rainfall variability at the inter-

annual and interdecadal time scales, it is desirable to

develop a time-scale decomposition (TSD) approach to

obtain the downscaled rainfall totals by combining two

distinct downscaling models for the interannual and

interdecadal rainfall variability.

The framework of this study is organized as follows.

Section 2 introduces the data used in this work. Section 3

describes the proposed TSD approach to statistically

downscale NC summer rainfall. The downscaled results

from two distinct statistical downscaling models cali-

brated for the interannual and interdecadal rainfall

variability and their combined results for total rainfall

are presented in section 4. Key results by applying the

downscaling model to climate change simulations are

described in section 5. Finally, section 6 contributes to

a summary and discussion.

2. Data

Observed rainfall data were derived from 160-station

monthly rainfall dataset for China provided by the

China Meteorological Administration for the period

1951–2008. July and August (JA) is the primary rainy

season over NC, and the total rainfall series during JA

averaged over 15 gauge stations (Fig. 1a) within the re-

gion of 1108–1228E, 358–408N is designed to be predicted.

FIG. 1. (a) The 15 gauge stations used to represent North China (1108–1228E, 358–408N)

denoted by the rectangle. (b) Power spectrum for July–August rainfall. Peak over the dashed

line indicates the confidence level is . 80% against a red noise. (c) Total rainfall (mm) during

July–August (1’s) from 1951 to 2008 and its interdecadal variation with period exceeding

7 years (solid line).
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Atmospheric data were extracted from the National

Centers for Environment Prediction (NCEP)–National

Center for Atmospheric Research (NCAR) reanalysis

dataset on a 2.58 3 2.58 grid (http://www.esrl.noaa.gov/

psd/data/gridded/data.ncep.reanalysis.html), including

SLP, 500-hPa geopotential height (Z500), 850-hPa me-

ridional wind (V850), etc. SST data were taken from

Hadley Center SST dataset I on a 18 3 18 grid (http://

hadobs.metoffice.com/hadisst/). Several well-known climate

indices are employed as candidate predictors. The south-

ern annular mode index (SAMI) is defined as the differ-

ence in the normalized monthly zonal-mean SLP between

408 and 708S (Nan and Li 2003), and the northern annular

mode index (NAMI) is defined as the difference between

358 and 658N (Li and Wang 2003a), both are available

online (http://web.lasg.ac.cn/staff/ljp/dataset.html). The

North Atlantic Oscillation index (NAOI) is defined sim-

ilar to NAMI but regionally over the North Atlantic

sector from 808W to 308E (Li and Wang 2003b); it is also

available online (http://web.lasg.ac.cn/staff/ljp/dataset.html).

The Niño-3 index is used to represent the ENSO phe-

nomenon and available online (http://www.cpc.noaa.gov/

data/indices). The Pacific decadal oscillation index

(PDOI) is derived as the leading PC of monthly SST

anomalies in the North Pacific Ocean poleward of 208N

(Zhang et al. 1997) and is available online (http://jisao.

washington.edu/pdo/PDO.latest).

The GCM data were derived from three GCMs [Com-

monwealth Scientific and Industrial Research Organisa-

tion Mark version 3.5 (CSIRO Mk3.5), Centre National

de Recherches Météorologiques Coupled Global Cli-

mate Model, version 3 (CNRM-CM3), and Max Planck

Institute (MPI) ECHAM5] selected from 21 GCMs

(Table 1) participating in the World Climate Research

Programme’s (WCRP’s) Coupled Model Intercompari-

son Project phase 3 (CMIP3) due to their simulation of

the predictors in the downscaling model. The outputs

from the twentieth-century simulation experiment

(20c3m) and climate change experiment based on the

A1B emission scenario of Intergovernmental Panel on

Climate Change (IPCC) Assessment Report 4 (AR4) are

utilized and they are available online (http://www-

pcmdi.llnl.gov/). Since these GCMs have different hori-

zontal resolutions, raw GCMs outputs were interpolated

into a resolution of 2.58 3 2.58 the same as NCEP re-

analysis data using bilinear interpolation method.

3. Methods

The spectrum analysis shows that there primarily exist

two peaks with periods of 2–3 years and 12–15 years in

the NC summer rainfall during 1951–2008 (Fig. 1b), in-

dicating strong interannual and interdecadal variability

(Fig. 1c). A previous study (Lu 2003) indicated that

there are distinct relationships between the NC summer

rainfall and circulation anomalies at the interdecadal

and interannual time scales, respectively; the inter-

decadal variation does not modify the interannual vari-

ation and its physical mechanism. This finding motivates

us to build a TSD approach to downscale NC summer

rainfall by identifying respective forcing factors linked to

the interannual and interdecadal variability via distinct

statistical-downscaling models, respectively.

The main stages to establish and validate the TSD

model are shown in Fig. 2. Assume that the observed

rainfall series Y(t) can be decomposed into the inter-

annual component YA(t) and the interdecadal compo-

nent YD(t) by

Y(t) 5 YA(t) 1 YD(t). (1)

To establish a TSD approach to downscale rainfall Y(t),

the whole study period 1951–2008 (N 5 58) was sepa-

rated into the calibration period 1951–90 (n 5 40) and

independent validation period 1991–2008.

To calibrate models for the interannual and inter-

decadal rainfall variability, observed rainfall and indi-

vidual predictors are decomposed as the interannual

(variation less than 7 years) and interdecadal (variation

longer than 7 years) components by Fourier decomposi-

tion filtering using the data over 1951–90. A correlation-

based cross-validation stepwise regression (C_CVSR)

downscaling scheme documented in our previous paper

(Guo et al. 2011, manuscript submitted to J. Geophys.

Res.) is used to build the interannual model (IAM) and

interdecadal model (IDM) for the relationship between

rainfall and associated predictors at interannual and in-

terdecadal time scales, respectively. Taking the predicted

values ŶA(t) and ŶD(t) together we obtain the predicted

rainfall totals over the training period 1951–90. Note that

the C_CVSR downscaling scheme primarily contains

two stages—that is, 1) the identification of potential

predictors over the global scale through correlation

analysis with rainfall, and 2) the selection of ‘‘optimal’’

predictors from the potential predictor set to formulate

regression equations by cross-validation-based stepwise

regression (CVSR) approach. See appendix A for some

details about the CVSR approach.

To validate the skill of the TSD approach to down-

scale NC summer rainfall, predictors selected by the

IAM and IDM based on the training period 1951–90

are decomposed as the interannual and interdecadal

components by Fourier decomposition filtering over the

whole period 1951–2008 (N 5 58), and they are taken

into respective forecast equation (the IAM and IDM)
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to calculate the downscaled interannual and interdecadal

rainfall components over the validation period 1991–2008.

Taking the predicted values Ŷ
A

(t) and Ŷ
D

(t) from the

IAM and IDM together, we obtain the predicted rainfall

totals over 1991–2008, which indicate the true predictive

skill of the TSD approach. We quantify the degree of

prediction uncertainty with the bootstrap approach (Stine

1985), and the confidence intervals associated with the

prediction are derived from the spread of 1000 bootstrap

samples with random replacement. See appendix B for

some details about the bootstrap approach.

4. Downscaling NC summer rainfall

In this section, we use C_CVSR downscaling scheme

to establish distinct models for relationships between dis-

tinct large-scale predictors and the NC summer rainfall at

the interannual and interdecadal time scales, respectively.

TABLE 1. List of the 21 GCMs used in our study.

Name Research Group

Horizontal

resolution Run

Bjerknes Center for Climate Research (BCCR)

Bergen Climate Model version 2 (BCM2.0)

Bjerknes Center for Climate Research, Norway T63 run1

Canadian Centre for Climate Modelling and Analysis

(CCCma) Coupled General Circulation Model,

version 3.1 (CGCM3.1) (T47)

Canadian Centre for Climate Modeling and

Analysis, Canada

T47 run1

CGCM3.1(T63) Canadian Centre for Climate Modeling and

Analysis, Canada

T63 run1

CNRM-CM3 Meteo-France/Center National de Recherches

Meteorologiques, France

T63 run1

CSIRO Mk3.0 CSIRO Atmospheric Research, Australia T63 run1

CSIRO Mk3.5 CSIRO Atmospheric Research, Australia T63 run1

Institute of Atmospheric Physics (IAP) Flexible Global

Ocean–Atmosphere–Land System Model gridpoint

version 1.0 (FGOALS1.0)

State Key Laboratory of Numerical Modeling for

Atmospheric Sciences and Geophysical Fluid

Dynamics (LASG)/Institute of Atmospheric

Physics, China

2.8 3 2.8 run1

Geophysical Fluid Dynamics Laboratory Climate Model

version 2.0 (GFDL CM2.0)

National Oceanic and Atmospheric Administration

(NOAA) Geophysical Fluids Dynamics

Laboratory, United States

2 3 2.5 run1

GFDL_CM2.1 NOAA Geophysical Fluids Dynamics Laboratory,

United States

2 3 2.5 run1

Goddard Institute for Space Studies Atmosphere–Ocean

Model (GISS-AOM)

National Aeronautics and Space Administration

(NASA) Goddard Institute for Space Studies,

United States

3 3 4 run1

GISS Model E-H (GISS-EH) NASA Goddard Institute for Space Studies,

United States

4 3 5 run1

GISS Model E-R (GISS-ER) NASA Goddard Institute for Space Studies,

United States

4 3 5 run1

Institute of Numerical Mathematics Coupled Model,

version 3.0 (INM-CM3.0)

Institute for Numerical Mathematics, Russia 4 3 5 run1

Istituto Nazionale di Geofisica e Vulcanologia (Italy)

GCM version SXG (INGV-SXG)

Instituto Nazionale di Geofisica e Vulcanologia T106 run1

Model for Interdisciplinary Research on Climate 3.2,

high-resolution version [MIROC3.2(hires)]

Center for Climate Research Studies (CCSR) of

Tokyo University, Frontier of the Japan Agency

for Marine-Earth Science and Technology

(JAMSTEC), Japan

T106 run1

MIROC3.2 medium resolution version

[MIROC3.2(medres)]

CCSR of Tokyo University, Frontier of

JAMSTEC, Japan

T106 run1

MPI ECHAM5 Max Plank Institute for Meteorology, Germany 1.5 3 1.5 run1

Meteorological Research Institute Coupled General

Circulation Model, version 2.3.2 (MRI CGCM2.3.2)

Meteorological Research Institute, Japan T42 run1

NCAR Community Climate System Model, version 3

(CCSM3.0)

National Center for Atmospheric Research,

United States

T85 run1

Third climate configuration of the Met Office (UKMO)

Unified Model (HadCM3)

Hadley Center for Climate Prediction and

Research/Met Office, United Kingdom

2.75 3 3.75 run1

UKMO Hadley Centre Global Environmental Model

version 1 (HadGEM1)

Hadley Center for Climate Prediction and

Research/Met Office, United Kingdom

1.25 3 1.875 run1

576 J O U R N A L O F C L I M A T E VOLUME 25



a. Calibrating the IAM

The interannual correlation between the well-known

climate indices and NC summer rainfall are shown in

Table 2. It seems that the interannual components of

the June NAOI (NAOA) and Niño-3 index (Niño3A) are

significantly relevant, thus, these two indices are taken

as candidate predictors for modeling the interannual

rainfall variability. To further seek other possible pre-

dictors over global scale, interannual correlation of the

detrended time series between SLP, V850, Z500, SST

fields, and rainfall during 1951–90 is calculated (Fig. 3).

Previous studies indicated that interannual rainfall is as-

sociated with the circulation systems including low-level

meridional wind over East China (Huang et al. 1999),

mid-high circulation over Eurasia (Zhao and Song 1999),

the Mascarene high and Australian high (Xue 2005), and

the Somali Jet (Wang and Xun 2003); indeed, high

correlation coefficients appear over these areas, as in-

dicated by the rectangles in Fig. 3. Potential predictors

associated with the interannual rainfall variability are

calculated by averaging the values over the areas having

correlation coefficients exceeding 0.4 (significant at the

0.01 level) within the marked rectangles, which are de-

noted as Z
1A

2Z
9A

, and their details are listed in Table 3.

It is clear that each of these nine potential predictors has

a strong link with the NC summer rainfall with the sig-

nificant correlation coefficient at the 0.01 level.

Figure 4a shows the whole process of CVSR screening

procedure in calibrating the IAM. The root-mean-

square-error (RMSE) between the observed and cross-

validation estimated rainfall (CV_RMSE) is used to

measure the predictive performance of potential pre-

dictors at each step. Since the well-known teleconnection

indices represent large-scale signals and possess explicit

physical meaning, the significantly related indices (NAOA

TABLE 2. Interannual (interdecadal) correlation of detrended time series between July–August rainfall and several indices in June and

July–August (JA) during 1951–90.

SAMI NAMI NAOI PDOI Niño-3 index

June 20.06(20.83*) 20.27(0.04) 20.37**(0.19) 0.12(20.66*) 20.35**(20.52)

JA 20.09(20.54**) 0.08(20.37) 0.24(20.31) 20.25(20.54*) 20.29(20.12)

* Significant at the 0.05 level.

** Significant at the 0.01 level.

FIG. 2. Key stages in calibrating and validating the time-scale decomposition

downscaling model.
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and Niño3A) are preferentially taken to be selected in

CVSR procedure. At step 1, Niño3A is selected since it

yields the smaller CV_RMSE value of 49.9 mm. At step 2,

the CV_RMSE shows a decrease after adding the

NAOA, but this decrease in quadratic error is not sta-

tistically significant in terms of the mean value and the

variance value because the t- and F-tests’ values are 0.33

and 1.1, less than the significant values of 1.4 and 1.6 at

FIG. 3. Interannual correlation of detrended time series between July–August rainfall and (a),(b) sea level pres-

sure, (c),(d) 850-hPa meridional wind, (e),(f) 500-hPa geopotential height, and (g),(h) sea surface temperature in

(left) June and (right) July–August during 1951–90. Color shading indicates statistical significance at the 0.01 level.

Black rectangles indicate areas with high correlation coefficients.
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the 0.15 level. Among the well-known indices, only

Niño3A is selected into the regression equation. The ad-

ditional potential predictors (Z1A2Z9A) are added to be

selected at the following steps. At step 3, the sequential

inclusion of Z5Aresults in a statistically significant re-

duction in the CV_RMSE value to the minimum of

39.3 mm (t- and F-tests’ values are 1.5 and 1.62, ex-

ceeding the significant values); thus, Z
5A

is selected into

the regression equation as the second predictor. At step

4, further inclusion of Z
8A

reduces the CV_RMSE value

to a minimum of 33.2 mm; however, this reduction in

quadratic error is not statistically significant, indicating

termination of the CVSR screening procedure.

As a result of the CVSR screening procedure, Niño3A

and Z
5A

are finally selected into regression equation as

predictors X
1A

and X
2A

; in both cases, their regression

coefficients are significant at the 0.05 level. The IAM

is finally given in the form of

YA(t) 5 214X1A(t) 1 31:1X2A(t), (2)

where YA(t) is the interannual component of rainfall at

tth year (t 5 1, . . . , 40) over 1951–90, X
1A

(t) and X
2A

(t)

are the tth-observed values of the normalized indices

X
1A

and X
2A

.

Figure 5a shows the interannual variation of observed

and downscaled rainfall from the IAM (2). The IAM

provides a relatively accurate representation of obser-

vations, even for the independent verification period.

Table 4 summarizes this skill by showing the correlation

coefficients, RMSE and the ratio of RMSE to the cli-

matology rainfall (base period 1951–2008) between the

downscaled and observed values. The correlation co-

efficient and RMSE are 0.76 and 34.2 mm (11.1%) in

training period and 0.71 and 42.8 mm (13.9%) in in-

dependent validation period.

As a physically meaningful downscaling model, the

relationship between the predictors and rainfall should

be physically interpretable. In this regard, we explore

the possible physical linkage between the interannual

rainfall variation and predictors X1A and X2A by using

the data from the whole period 1951–2008.

The first predictor X
1A

is the interannual component

of the June Niño-3 index, representing the interannual

variation in June SST over the mideastern tropical Pa-

cific. When there is anomalous warming (i.e., positive

X1A anomaly), large-scale anomalous cooling appears over

the western tropical Pacific, and this anomalous El Niño

pattern could persist throughout JA (Fig. 6a). As an at-

mospheric Rossby wave response to the western Pacific

large-scale cooling in the western tropical Pacific, an

anomalous meridional tripole pattern is induced at the

low–midtroposphere over the western Pacific (Fig. 6b),

which is analogous to the Pacific–Japan or East Asia–

Pacific teleconnection pattern. Figures 6c,d show the

horizontal and meridional circulation response as fol-

lows: anomalously strong WPSH locates at about 258N,

and an anomalous northeasterly at its southern boundary

encounters northeastward cross-equator flows, giving rise

to anomalous convergence and ascent; at its northwestern

boundary, anomalous northward flows encounters the

southward flows induced by the cyclonic anomaly over the

North Pacific and northeast Asia, leading to anomalous

convergence and ascent at about 328N. This anomalous

circulation structure, which is consistent with previous

studies (Huang and Wu 1989; Lu 2005; Nitta 1987), makes

NC under the influence of cold and dry flows descending

from Northeast Asia and suppresses precipitation occur-

ring over NC. In contrast, when there is an anomalous

cooling over the mideastern tropical Pacific in June (i.e.,

negative X1A anomaly), the circulation described above

would reverse, favoring a wet summer over NC.

TABLE 3. Definitions of potential predictors for interannual model (IAM) and interdecadal model (IDM) and their correlation with

rainfall on the respective time scales for the period 1951–90.

Model Parameter Level Month

Area of surrounding

rectangle Label

Correlation (1951–1990)

Raw Detrended

IAM Sea level pressure Surface JA 258–558N, 908–1158E Z1A 20.57 20.57

Sea level pressure Surface JA 358–108S, 608–1108E Z2A 20.52 20.52

Meridional wind 850 hPa June 458–208S, 608–858E Z
3A

0.58 0.59

Meridional wind 850 hPa June 558–758N, 08–408E Z
4A

20.6 20.6

Meridional wind 850 hPa JA 258–47.58N, 102.58–1258E Z5A 0.64 0.65

Meridional wind 850 hPa JA 08–258N, 508–708E Z6A 0.62 0.62

Geopotential height 500 hPa June 358–158S, 458–708E Z
7A

0.51 0.5

Geopotential height 500 hPa June 558–758N, 3358–357.58E Z8A 0.62 0.62

Geopotential height 500 hPa JA 408–558N, 758–1008E Z9A 20.59 20.59

IDM Sea level pressure Surface June 258S–108N, 308–608E Z1D 20.95 20.94

Sea level pressure Surface JA 308S–108N, 308–808E Z
2D

20.93 20.92

Geopotential height 500 hPa June 58S–208N, 908–1408E Z3D 20.94 20.92

Geopotential height 500 hPa June 58–358N, 508–908E Z4D 20.92 20.9
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The second predictor X
2A

represents the interannual

component of JA meridional wind over East China at

850 hPa, which is a regional predictor. Figure 7 shows

the interannual correlation of the detrended time se-

ries between the negative X2A and geopotential height

at 850, 500, and 200 hPa. It is evident that, associated

with 2X
2A

, there appears a quasi-barotropic anomaly

in geopotential height fields of an anticyclonic anomaly

over central Asia and Mongolia region and a cyclonic

anomaly over northwestern Pacific corresponding to

the anomalous northeasterly over East China. As a

result, the anomalous northeasterly currents prevent

warm and moist air being transferred to the NC, lead-

ing to a dry summer. Thus, NC summer rainfall is

closely associated with low-level meridional wind at

interannual time scale, and it modulates the transfer

of warm and humid air from South China Sea and

western Pacific. This result is consistent with the previous

study by Huang et al. (1999). Yet the underlying driver

for the quasi-barotropic pressure anomaly in low–

mid–high troposphere is not clear and deserves fur-

ther investigation.

FIG. 4. Root-mean-square error between observed and cross-validation-estimated rainfall

(CV_RMSE; mm) by different potential predictors (legend) in each step of stepwise regression

procedure for (a) interannual model and (b) interdecadal model. The red markers denote

the minimum CV_RMSE value in each step. For definitions of the potential predictors

Z1A–Z9A and Z1D–Z4D, see text.
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b. Calibrating the IDM

The procedure for calibrating the IDM is the same as

that for IAM. The June SAMI and PDOI show signifi-

cant correlations with rainfall at interdecadal time scale

(Table 2); thus, the interdecadal components of SAMI

(SAMD) and PDOI (PDOD) are considered as candi-

date predictors for IDM. Figure 8 shows the inter-

decadal correlation of detrended time series between

SLP, V850, Z500, SST fields, and rainfall over the training

period 1951–90; strongly correlated areas are denoted by

rectangles. Areas with correlation coefficients exceeding

0.8 within the rectangles are identified to calculate in-

dices forming potential predictors Z1D–Z4D; their details

are listed in Table 3. It is evident that these four potential

predictors are strongly associated with the interdecadal

rainfall variation with correlation coefficients ranging from

20.90 to 20.95, significant at the 0.01 level after adjusting

the degree of freedom.

Figure 4b shows the CVSR screening procedure for

calibrating the IDM. The significantly correlated well-

known indices (SAMD and PDOD) are preferentially

selected. At step 1, SAMD is selected because of its

smaller CV_RMSE value. Then there is no significant

reduction in CV_RMSE value after sequential adding

PDOD at step 2 (t- and F-tests’ values are 1.2 and 1.3,

respectively, less than the significant values of 1.46 and

2.0 at the 0.15 level). The additional potential predictors

Z1D–Z4D are added to be selected at the next steps. At

step 3, together with SAMD, sequential inclusion of Z1D

results in a statistically significant reduction in the

CV_RMSE value to the minimum (t- and F-tests’ values

are 2.4 and 2.05); thus, Z
1D

is selected as the second pre-

dictor. At step 4, the sequential inclusion of Z2D reduces

the CV_RMSE value to the minimum, but this reduction is

not statistically significant, leading to the termination of

the CVSR selecting procedure. SAMD and Z1D are se-

lected into regression equation until now. However, the

regression coefficient of SAMD is not significant at the 0.05

level; the SAMD is excluded. Finally, only Z
1D

is taken as

the predictor X
1D

for the IDM given by

YD(t) 5 320:5 2 47X1D(t), (3)

where YD(t) is the interdecadal component of rainfall at

tth year (t 5 1, . . . , 40) over 1951–90, and X1D(t) is the

tth-observed values of the normalized X1D.

Figure 5b shows the interdecadal variation of ob-

served and downscaled rainfall from Eq. (3). Table 4

shows the correlation coefficients, RMSE, and the ratio

of RMSE to the climatology rainfall. They are 0.95 and

16.2 mm (5.2%) in training period and 0.84 and 23.1 mm

(7.5%) in test period, indicating a relative high skill in

predicating the interdecadal variability using X1D.

We now give an interpretation of why the predictor

X1D [i.e., the interdecadal component of June SLP over

southwestern Indian Ocean (IO)] is associated with the

interdecadal rainfall variation. In the past 50 years, X
1D

has a pronounced increasing trend (Fig. 9 d). Figure 9a

shows the interdecadal correlation of the detrended time

series between X1D and June surface temperature field,

revealing the positive association between X1D and the

FIG. 5. (a) Interannual component, (b) interdecadal component,

and (c) total amount of the observed (black solid line) and down-

scaled (red solid line) July–August rainfall (mm) during training

period (1951–90) and test period (1991–2008). Blue-dashed lines

denote 95% confidence intervals.

TABLE 4. Downscaled results obtained from the interannual

model (IAM) and interdecadal model (IDM) and their combina-

tion for total rainfall (total) in training period (1951–90) and in-

dependent test period (1991–2008). Cor. is correlation between

observation and prediction; r is the ratio of RMSE (mm) to the

climatology July–August rainfall during 1951–2008.

Model

Training period Test period

Cor. RMSE r Cor. RMSE r

IAM 0.76 34.2 11.1% 0.71 42.8 13.9%

IDM 0.95 16.2 5.2% 0.84 23.1 7.5%

Total 0.83 39.5 12.8% 0.82 45.8 14.8%
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surface temperature over western tropical Pacific and

eastern tropical IO (i.e., the warm pool). Since the trop-

ical IO has undergone anomalous warming during the

past decades as indicated in previous studies (Ding et al.

2010; Du and Xie 2008; Li et al. 2008; Zhou et al. 2009a,b),

it is likely to trigger the multidecadal increase in SLP over

the southwestern IO via an anomalous zonal circulation.

On the other hand, the ocean is a slowly varying medium

and the warming anomaly over the warm pool may be

responsible for the persistent X1D anomaly and anomalous

circulation over East Asia throughout the following JA.

Figure 9b presents the associated June surface circu-

lation with positive X
1D

anomaly. Associated with SLP

increase over the southwestern IO, there appear anom-

alous northward cross-equatorial flows at about 508–708E

longitudes. Meanwhile, the anomalous warming over the

warm pool favors an anomalous northerly appearing over

East China as reported by previous studies (Li et al. 2010;

Zhou et al. 2009b). The anomalous northerly encounters

the enhanced cross-equatorial southerly, intensifying the

convergence in the intertropical convergence zone over

the western Pacific. The enhanced convergence and

ascent strengthens the meridional circulation, which is

clearly seen in a latitude–vertical section averaged at

1008–1408E longitudes (Fig. 9c). The anomalous meridi-

onal circulation leads NC under a descent control and a

shortage of moisture, leading to a dry summer. Figure 9d

shows the normalized time series and linear trends of X
1D

as well as the interdecadal rainfall component, clearly

indicating their out-of-phase relationship.

c. Downscaled total summer rainfall over NC

It is straightforward to obtain the downscaled total

rainfall by summing up downscaled values from IAM

and the IDM. Figure 5c compares the downscaled and

observed NC summer rainfall. Because the IAM and

IDM are derived using data over the training period

1951–90, the predicted values after 1990 therefore in-

dicate the true predictive skill. In general, the perfor-

mance of the TSD approach evident in the training

period is maintained during the subsequent verification

period. Compared to the observed climatology rainfall

FIG. 6. Correlation of detrended time series between X
1A

and interannual variability of (a) surface temperature,

(b) 850-hPa geopotential height, (c) surface horizontal winds, and (d) meridional circulation along a latitude–

pressure cross section averaged over 1008–1408E in July–August during 1951–2008. Shading and vectors drawn in-

dicate significance at the 0.05 level. (c) Markers C and A denote anomalous cyclone and anticyclone, respectively.
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of 320.5 and 282.8 mm during 1951–90 and 1991–2008

periods, the downscaled results provide an accurate re-

production of 320.4 and 280.4 mm, respectively. Table 4

summarizes downscaling skill by showing some quan-

titative measurements. The correlation coefficients

between the downscaled and observed rainfall are all

highly significant at the 0.01 level, 0.83 for the training

period, and 0.82 for the test period. RMSE (the ratio of

RMSE to the climatology rainfall) is 39.5 mm (12.8%) in

training period and 45.8 mm (14.8%) in test period. All of

the results indicate that the TSD approach performs well

on downscaling NC summer rainfall.

On the other hand, we have also compared the down-

scaling skills between the TSD approach and the single

model (non-time-scale decomposition) based on C_CVSR

downscaling scheme by Guo et al. (2011, manuscript

submitted to J. Geophys. Res.). It is found that the TSD

approach has a better skill in terms of higher correlation

(0.82 versus 0.59) and a lower RMSE (45.8 versus

60.8 mm) between downscaled and observed rainfall in

test period 1991–2008. This progress in prediction dem-

onstrates the superiority of the TSD model.

5. Application to climate change simulations

We apply the downscaling models to predictors de-

rived from GCMs’ simulations for both the present-day

and future climate. Before the application, we evaluate

GCMs’ simulation for predictors used in the IAM and

IDM and select the well-performed GCMs to be utilized.

This examination involves 21 GCMs in CMIP3, and only

three GCMs (CSIRO Mk3.5, CNRM-CM3, and MPI

ECHAM5) are selected finally on the basis that they are

able to simulate the long-term-mean values and linear

trends of the predictors well. Table 5 lists the results of

the simulations of all predictors in present-day and fu-

ture climate under A1B emission scenario from three

selected GCMs and their ensemble mean. With the

GCM-generated predictors, rainfall is estimated for

the present-day climate (1951–99) and the near-future cli-

mate (2010–24 and 2035–49) under A1B emission scenario.

To downscale GCMs’ outputs to NC summer rainfall,

we update the IAM and IDM with observed rainfall and

NCEP data from 1951 to 2008. GCM-generated pre-

dictors are placed in the updated forecast equations to

make predictions. Figure 10 compares observed, GCMs

directly predicted, and downscaled long-term-mean rain-

fall for 1951–99, 2010–24, and 2035–49. The downscaled

value for the future is accompanied by 50% and 95%

confidence intervals (horizontal lines in Fig. 10), which

indicate the uncertainty associated with the downscaling

model as estimated by bootstrap approach.

For predictions under the present-day climate (1951–

99), all of the raw GCMs obviously underestimate the

rainfall, while the downscaled values represent slight

overestimates. Compared with the raw GCMs’ simula-

tions, in all cases, the downscaled values have a smaller

percentage error: CSIRO Mk3.5 (13% cf. 212%),

CNRM-CM3 (114% cf. 225%), MPI ECHAM5 (117%

cf. 221%), and ensemble mean (111% cf. 219%).

For the future projection, simulations from CNRM-

CM3, MPI ECHAM5, and the ensemble mean directly

project a slow decrease in rainfall until 2010–24, fol-

lowed by a slight increase (approaching the present-day

state) until 2035–49, while CSIRO Mk3.5 indicates an

opposite projection. However, the downscaled values

show different projections from the raw GCMs’ esti-

mates. Except for the downscaled values based on MPI

ECHAM5 that indicate a continuous decrease in rain-

fall, other downscaled values indicate a slight increase

until 2010–24, followed by a slight decrease (still wetter

than the present-day state) until 2035–49. The result in-

dicates that there is a less chance for large changes to

FIG. 7. Correlation of detrended time series between negative

X2A and interannual variability of (a) geopotential height (shad-

ing) and horizontal winds (vectors) at 850 hPa, (b) 500-hPa geo-

potential height, and (c) 200-hPa geopotential height in July–August

during 1951–2008. Shading and vectors drawn indicate significance

at the 0.05 level.
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happen, such as severe long-term droughts or floods

(relative to the present-day state) for the next 40 years

under A1B emission scenario. The wetting condition

predicted by a majority of downscaled values is consis-

tent with the prediction from the regional climate model

(Gao et al. 2008), giving rise to more confidence to this

projection.

6. Summary and discussion

In this paper, we have proposed a TSD approach to

downscale NC summer rainfall through modeling the

interannual and interdecadal rainfall variability by the

IAM and IDM, respectively. The interannual compo-

nents of June Niño-3 index and JA meridional wind over

FIG. 8. As in Fig. 3, but on the interdecadal time scale.
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East China were linked to the interannual rainfall vari-

ability by the IAM, while the interdecadal component of

SLP over the southwestern IO was linked to the inter-

decadal rainfall variability by the IDM. Both the IAM

and IDM show good skills to downscale the interannual

and interdecadal rainfall variability in NC summer

rainfall. The downscaled total rainfall can be obtained

by summing up the two downscaled components from

the IAM and IDM. The results indicated that the TSD

approach has a relatively high predictive capability for

NC summer rainfall.

We have also applied the downscaling model to GCM-

generated predictors and estimated the long-term rain-

fall conditions for both the present-day (1951–99) and

the near-future climates (2010–24 and 2035–49) under

A1B emission scenario. For the present-day climate, in

all cases, the downscaled values showed smaller percent-

age errors than did the raw GCMs’ simulations. This su-

periority indicated that the downscaled predictions are

more reliable for representing the present-day climate, thus

implying a better representation of the future climate. For

future projection, a majority of downscaled values indicated

a slight increase in rainfall, different from the raw GCMs’

projection. The result also indicated that there would be less

chance for large changes to happen, such as severe long-

term droughts or floods (relative to the present-day state)

for the next 40 years under A1B emission scenario.

We point out that the downscaling models in this

study were calibrated based on NCEP-1 reanalysis data.

Since the NCEP-1 data may have systematic errors in

the period before 1970 (Greatbatch and Rong 2006),

there is a need to verify the reliability of the proposed

downscale models using other reanalysis data. We have

repeated the same analysis by using 40-yr European

Centre for Medium-Range Weather Forecasts (ECMWF)

Re-Analysis (ERA-40) data (1958–2002) extended with

NCEP-1 reanalysis data (2003–08). For IAM, the results

based on these two distinct datasets were almost the

same; for IDM, the area of predictor selected based on

ERA-40 data relatively shrunk, and the downscaling

skill was slightly worse. Anyhow, the downscaling models

calibrated from these two reanalysis datasets showed

FIG. 9. Correlation of detrended time series between X
1D

and interdecadal variability of (a) surface air temper-

ature, (b) sea level pressure (shading) and surface winds (vectors) in June, and (c) meridional circulation along

a latitude–pressure cross section averaged over 1008–1408E in July–August during 1951–2008. Shading and vectors

drawn indicate significance at the 0.05 level. (d) Normalized time series (dotted line) and the associated linear trend

(dash line) of X
1D

(red) and North China summer rainfall (blue) during 1951–2008.
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similar skills to some extent, suggesting reliability of our

downscaled results.

One should keep in mind that the reliability of down-

scaled future projection is strongly dependent on the

GCMs’ simulations of predictors. Hence, it is important

to evaluate GCMs’ simulations of predictors. In an eval-

uation of the 21 GCMs participating in CMIP3 regarding

the predictors used both in the IAM and IDM, large

TABLE 5. Observed and GCM-simulated predictors (for definitions of predictors, see text) in terms of climatology values [X
1A

(8C), X
2A

(m s21) and X
1D

(hPa)] and linear trend [X
1A

(8C yr21), X
2A

(m s21 yr21) and X
1D

(hPa yr21)] during 1951–99 for the present-day climate

and GCM-simulated climatology value during 2010–24 and 2035–49 for changed climate under A1B emission scenario.

Observation/GCMs Predictors

1951–99 2010–24 2035–49

Trend Climatology Climatology Climatology

Observation X1A 20.002 0.0

X
2A

20.007 0.0

X
1D

0.034 1015.15

CSIRO MK3.5 X1A 0.004 0.0 20.028 20.011

X2A 0.0 0.0 0.069 20.007

X
1D

0.0 1015.00 1014.72 1014.84

CNRM-CM3 X1A 0.006 0.0 20.173 0.076

X2A 20.002 0.0 0.011 20.023

X1D 0.006 1014.49 1014.48 1014.39

MPI ECHAM5 X
1A

20.001 0.0 0.082 0.029

X2A 20.002 0.0 0.012 20.004

X1D 0.010 1014.33 1014.41 1014.61

Ensemble mean X
1A

0.003 0.0 20.040 0.032

X
2A

20.001 0.0 0.031 20.012

X1D 0.006 1014.61 1014.54 1014.61

FIG. 10. Present-day (1951–99) and near-future (2010–24 and 2035–49) rainfall (mm) under

A1B emission scenario from three GCMs and (bottom right) their ensemble mean. Circles

represent observation, triangles represent raw GCMs’ output, and crosses represent down-

scaled values. Boxes and error bars represent 50% and 95% confidence intervals, respectively.
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errors were found in terms of the long-term-mean value,

linear trend, and interannual variability. Therefore, the

improvement of GCMs’ simulations is important for

statistical downscaling technique to obtain reliable pro-

jections.

It should be noted that the downscaled method in this

paper only represented the changes in rainfall that linked

to the changes in circulation. Previous studies have in-

dicated the necessity to include the humidity-related pa-

rameters in projecting future rainfall changes because

moisture would markedly change corresponding to future

changes in radiation forcing (Benestad 2001; Charles

et al. 1999; Crane and Hewitson 1998; Karl et al. 1990;

Spak et al. 2007; Von Storch et al. 1993). In the present

analysis, some changes in humidity may be accounted

for by changes in the circulation field as they may affect

the direction of moisture transfer; however, they would

not account for large-scale changes in humidity asso-

ciated with global warming. The latter effect is difficult

to incorporate here because GCMs are unable to supply

reliable simulations of the humidity-related predictor that

was selected by correlation analysis.

Like other statistical downscaling models, the under-

lying stationary hypothesis may be questionable. Previ-

ous studies have emphasized the importance of assessing

the robustness of the relationship in the future (Paul et al.

2008; Wilby and Wigley 1997). The statistical downscal-

ing models that were linked with the principal climate

modes try to test the persistence of the principal climate

modes under changed climate conditions; however, this

task cannot be performed in our downscaling model be-

cause it seeks predictors based on correlation analysis.

Nevertheless, it is noteworthy that the relationship es-

tablished in this paper is physically interpretable, which

strengthens our confidence in the downscaled results for

future.

Finally, it should be cautious to interpret the down-

scaled rainfall projections for future because the pro-

jections inevitably contain a degree of uncertainty. A

consistent projection with additional types of down-

scaling models or regional climate models wound pro-

vide more reliability. Future work will make projection

under other emission scenarios, such as A2 and B1, to

obtain various rainfall conditions under distinct emis-

sion scenarios.
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APPENDIX A

Cross-Validation-Based Stepwise Regression
Approach

The CVSR approach is a ‘‘forward’’ stepwise screen-

ing procedure to select the ‘‘optimal’’ predictors from

the potential predictor set. It employs leave-one-out

cross validation to select the robust predictors and reduce

the false possibility. The root-mean-square error between

observation and cross-validation estimates (CV_RMSE)

is taken as the criterion to evaluate the performance of

potential predictor.

The CVSR method can be described in a general form

using a series of iteration steps:

Y(t) 5 c 1 �
p

i51
biXi(t) 1 «(t), (A1)

where Y(t) is the predictand for t 5 1, . . . , n year train-

ing period; X
i
(t) is the tth observation of the predictor

X
i

selected from candidate predictors Z
1
, . . . , Z

m
by

the ith step in forward stepwise regression screening;

c and b
i

are model parameters; and «(t) is the error of

the estimated model (A1). Specifically, model (A1) is

established by the following p , m steps.

d Step 1: Regress the predictand Y(t) onto each of

the potential predictors Zi1
(i1 2 f1, . . . , mg) to obtain

1-predictor regression equation fi1
. The performance

of each 1-predictor regression equation is measured by

CV_RMSE at step 1

CV_RMSEi
1
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
�

n

t51
fY(t) 2 fi

1
,2t[Zi

1
(t)]g2

vuut
,

(A2)

where regression equation fi1,2t is fitted by Zi1
( j)

( j 2 f1, . . . , ngnftg), that is, all observations excluding

the tth one. If CV_RMSEi1
is the smallest CV_RMSE

achieved at step 1, that is, CV_RMSE1 5 mini12f1,...,mg
fCV_RMSEi1

g, the potential predictor Zi1
is selected

as the first predictor, that is, X
1

5 Z
i1

.
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d Step 2: Regress Y(t) onto X
1

and each of the remain-

ing m-1 potential predictors Z
i2

(i
2
2 f1, . . . , mgnfi

1
g),

that is, all potential predictors except Z
i1

to write

2-predictor regression equation fi2
. The performance

of each 2-predictor regression equation is measured by

CV_RMSE at step 2

CV_RMSEi
2

5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
�

n

t51
fY(t) 2 fi

2
,2t[X1(t), Zi

2
(t)]g2

vuut
,

(A3)

where regression equation fi2,2t is fitted by X1( j),

Zi2
( j)( j 2 f1, . . . , ngnftg). Now, if CV_RMSEi2

is

the smallest CV_RMSE achieved at step 2, that

is, CV_RMSE2 5 mini22f1,...,mgnfi1gfCV_RMSEi2
g and

moreover, CV_RMSE
2

is significantly smaller than

CV_RMSE
1
, the potential predictor Z

i2
is selected

as the second predictor, that is, X
2

5 Z
i2

; otherwise,

stop selecting new predictors. To statistically test

the significant reduction in CV_RMSE2 relative to

CV_RMSE1, t and F tests are utilized to test the

quadratic errors series between the observation

and cross-validated estimates obtained at step 2

[i.e., fY(t)2 f2,2t[X1(t), X2(t)]g2, t 2 f1, . . . ,ng, where

f
2,2t

is fitted by X
1
( j),X

2
( j), ( j2 f1, . . . ,ngnftg)] and

at step 1 [i.e., fY(t) 2 f
1,2t

[X
1
(t)]g2, t 2 f1, . . . , ng,

where f
1,2t

is fitted by X
1
( j), ( j 2 f1, . . . , ngnftg)] in

terms of the mean value and the variance.

Generally, at step k, assume that there is k 2 1 predic-

tors X
1

5 Z
i1

, . . . , X
k21

5 Z
ik 2 1

selected from original po-

tential predictors Z
1
, . . . , Z

m
, and the associated smallest

CV_RMSE at step k 2 1 is

CV_RMSEk21 5 min
i
k21
2f1,..., mgnfi

1
,..., i

k22
g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
�

n

t51
fY(t) 2 fi

k21
, 2t[X1(t), . . . , X

(k22)
(t), Zi

k21
(t)]g2

vuut
, (A4)

where regression equation f
ik 2 1,2t

is fitted by X
1
( j), . . . ,

X(k22)( j), Zi
k21

( j), ( j 2 f1, . . . , ngnftg).

Step k: Regress Y(t) onto X
1
, . . . , X

k21
and each

Z
ik

(i
k
2 f1, . . . , mgnfi

1
, i

2
, . . . , i

k21
g) of remaining m-

(k 2 1) potential predictors to write k-predictor regression

equation fik
. The performance of each k-predictor re-

gression equation is measured by CV_RMSE at step k

CV_RMSEi
k

5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
�

n

t51
fY(t) 2 fi

k
,2t[X1(t), . . . , X

(k21)
(t), Zi

k
(t)]g2

vuut
,

(A5)

where regression equation fik ,2t is fitted by X1( j), . . . ,

X(k21)( j), Zik
( j), ( j 2 f1, . . . , ngnftg). If CV_RMSEik

is

the smallest CV_RMSE achieved at step k, that

is, CV_RMSEk 5 minik2f1,...,mgnfi1,...,ik 2 1g fCV_RMSEik
g

and moreover, CV_RMSE
k

is significantly smaller

than CV_RMSE
k21

, the potential predictor Zik
is se-

lected as the kth predictor, that is, X
k

5 Zik
; other-

wise, stop selecting new predictors. The t and F tests

are utilized to statistically test the quadratic errors

series between the observation and cross-validated

estimates obtained at step k [i.e., fY(t) 2 fk,2t

[X1(t), . . . , Xk(t)]g2, t 2 f1, . . . , ng, where fk,2t is fitted by

X
1
( j), . . . , X

k
( j), ( j 2 f1, . . . , ngnftg)] and at step k-1

[i.e., fY(t) 2 f
k21,2t

[X
1
(t), . . . , X

k21
(t)]g2, t 2 f1, . . . , ng,

where f
k21,2t

is fitted by X
1
( j), . . . , X

k21
( j),

( j 2 f1, . . . , ngnftg)] in terms of the mean value and the

variance.

Finally, for all of the selected predictors via the CVSR

procedure, F test is used to test their regression co-

efficients. The insignificant predictors wound be excluded,

and the remaining predictors are used to fit the multi-

linear-regression equation with the least squares method.

APPENDIX B

Bootstrapping Prediction Intervals for Linear
Regression Model

In general, a linear regression model is defined as

Y(t) 5 �
p

k51
bkXk(t) 1 «t, (B1)

where «
t

is residual error. Least squares fit to the n-yr

training data f[X(t), Y(t)]: t 5 1, . . . , ng yields

Ŷ(t) 5 �
p

k51
b̂kXk(t). (B2)

It is validated by using independent data f[(X(t 1 h),

Y(t 1 h)]: h 5 1, . . . , N – ng(N . n). To quantify the

uncertainty of downscaled rainfall using Eq. (B2) re-

lated to Xi (t 1 h) (i 5 1, . . . , p; h 5 1, . . . , N – n), we

need to establish the cumulative distribution function G
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for the confidence interval of the prediction error

Y(t 1 h) 2 Ŷ(t 1 h). A 100(1 2 a)% prediction intervals

for Y(t 1 h) is given by

[Ŷ(t 1 h) 1 G21(a/2), Ŷ(t 1 h) 1 G21(1 2 a/2)].

(B3)

However, as the distribution F of the residual variability

«
t

in Eq. (B1) is unknown, we cannot obtain the distri-

bution G analytically. We apply a bootstrap-resampling

procedure to estimate the distribution G.

First, the residuals et 5 Y(t) 2 Ŷ(t) are calculated

with Eq. (B2). For an independent test data fX(t 1 h),

h 5 1, . . . , N – ng, predicted value Ŷ(t 1 h) 5

�p

k51b̂
k
X

k
(t 1 h). The error distribution F is estimated

by the empirical distribution of residuals, which we

denote Fn. This is then used to construct bootstrapped

samples of the form

f[X(t), Y*(t)]g, t 5 1, . . . , n, [X(t 1 h), Y*(t 1 h)],

with Y*(t) 5 Ŷ(t) 1 «
t* and Y*(t 1 h) 5 Ŷ(t 1 h) 1 «9

t*,

where «
t* and «9

t* are independently sampled from Fn, that

is, they are randomly sampled with replacement from the

set of residuals fe
1
, . . . , e

n
g. The superscript * denotes

a value constructed for a particular bootstrap sample.

Each bootstrapped sample is used to calculate a sim-

ulated estimate b̂k
*, predicted value Ŷ*(t 1 h), and pre-

dicted error «9t* 5 Y*(t 1 h) 2 Ŷ*(t 1 h). The empirical

distribution of «9
t*, which we denote ~G, is then an esti-

mate of the distribution of the bootstrap prediction errors.

It can be used as the distribution function G. Therefore,

a 100(1 2 a)% prediction interval for Y(t 1 h) can be

estimated as

[Ŷ(t 1 h) 1 ~G21(a/2), Ŷ(t 1 h) 1 ~G21(1 2 a/2)].

In our downscaling rainfall analysis, estimates of the

95% confidence interval of predicted rainfall for 1000

bootstrapping samples using independent test data over

1991–2008 are shown as dashed blue curves in Fig. 5c.

Further, bootstrapping estimates of the uncertainty (50%

and 95% confidence intervals for 1000 bootstrap repli-

cations) of downscaled future rainfall are shown in Fig. 10.
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