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ABSTRACT

A time-scale decomposition (TSD) approach to statistically downscale summer rainfall over North China is
described. It makes use of two distinct downscaling models respectively corresponding to the interannual and
interdecadal rainfall variability. The two models were developed based on objective downscaling scheme that
1) identifies potential predictors based on correlation analysis between rainfall and considered climatic
variables over the global scale and 2) selects the ““optimal” predictors from the identified potential predictors
via cross-validation-based stepwise regression. The downscaling model for the interannual rainfall variability
is linked to El Nino-Southern Oscillation and the 850-hPa meridional wind over East China, while the one for
the interdecadal rainfall variability is related to the sea level pressure over the southwest Indian Ocean.
Taking the downscaled interannual and interdecadal components together the downscaled total rainfall was
obtained. The results show that the TSD approach achieved a good skill to predict the observed rainfall with
the correlation coefficient of 0.82 in the independent validation period. The authors further apply the model
to obtain downscaled rainfall projections from three climate models under present climate and the A1B
emission scenario in future. The resulting downscaled values provide a closer representation of the obser-
vation than the raw climate model simulations in the present climate; for the near future, climate models
simulated a slight decrease in rainfall, while the downscaled values tend to be slightly higher than the present
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1. Introduction

In the past decades, global climate has undergone rapid
changes as it has been approved by documented obser-
vation in every continent (Solomon et al. 2007). Pro-
jection for future climate (e.g., rainfall) and its associated
influences on environment and society (e.g., runoff and
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water storages) have attracted growing attentions world-
wide. However, uncertainties in projected rainfall changes
for later this century plague estimates of impacts on
future runoff and water storages (Milly et al. 2008). In
particular, there are several difficulties associated with
interpreting changes in variables simulated at a resolu-
tion of 100-200 km in terms of changes to be expected at
smaller catchment scales. There is an increasing demand
for more reliable estimates of these changes by water re-
source managers who need to make long-term decisions
about future infrastructure demands (e.g., new reservoirs,
pipelines, drainage, etc.). North China (NC; 110°-122°E,
35°-40°N) has already been severely affected by a downturn
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in rainfall and reductions in runoff and water shortage.
Problems of water shortage and related environmental
issues in NC have become the most significant limiting
factors affecting sustainable development in this impor-
tant region of China (Xia et al. 2007).

NC is located at the northern margin of East Asian
subtropical monsoon region and receives the bulk of
annual rainfall during the summer half-year (i.e., May-
October). Summer (July—August) rainfall over NC is
affected by both the teleconnected large-scale signals
and the regional signals. As for the teleconnected sig-
nals, El Nifio-Southern Oscillation (ENSO) was repor-
ted to be associated with NC summer rainfall (Huang
and Wu 1989; Lu 2005; Wang et al. 2000; Wu and Li
2008); North Atlantic Oscillation (NAO) yields another
predictability source for the NC summer rainfall (Wu
etal.2009,2011). Additionally, the regional signals, such
as the components in the East Asian summer monsoon
(EASM) system (Huang et al. 2008; Li and Zeng 2002;
Yang and Sun 2003) and the mid-high-latitude circula-
tions over Eurasia (Wang et al. 2008; Zhao and Song
1999) also exert influence on NC summer rainfall. Lu
(2002, 2003) reported that there exists obviously distinct
variability at the interannual and interdecadal time scales
in NC summer rainfall. The strong high-frequency vari-
ability results in severe floods or droughts in NC (Huang
et al. 2006), while the low-frequency variability shows a
pronounced drying trend during the past half-century,
which has attracted great interests to find out the un-
derlying causes of the multidecadal drought over NC
(Ding et al. 2009; Li et al. 2010; Li et al. 2003; Sun 1999;
Zhou et al. 2009a). The extremely complex variability in
NC summer rainfall complicates its seasonal prediction
and long-term projections. This is an important issue in
terms of disaster prevention and mitigation and decision
making.

It is well-known that general circulation models
(GCMs) provide a good tool to project the large-scale
long-term mean future climate; however, the skillful spa-
tial resolution in most updated climate models is large
than or at least 20004000 km (Grotch and MacCracken
1991), beyond the demand for regional precipitation
prediction, which is sensitive to subgrid processes. The
physical parameterization schemes are critical for pre-
cipitation projection, and the limitation of parameteriza-
tion schemes in current climate models is also responsible
for the large uncertainties in rainfall simulations, even for
ensemble forecasts (Whetton et al. 2005).

Many approaches have been developed to overcome
the uncertainties accompanying future rainfall projec-
tions, including the assessment of the performance of
individual models as a guide to the reliability of their
predicted changes (Maxino et al. 2008; Perkins et al.
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2007; Smith and Chandler 2009; Wu and Li 2009). Sta-
tistical downscaling is another method that can poten-
tially assist in the assessment of climate models. A simple
test for a model is that it cannot only provide an accurate
estimate for regional rainfall, but that it should also
simulate the observed relationship between regional
rainfall and other key variables, for example, sea level
pressure (SLP). If these criteria can be satisfied, simu-
lated changes in rainfall are more likely reliable than
otherwise. It cannot only provide an indication of any
such relationship, it can also potentially provide alterna-
tive estimates for rainfall changes if the model-simulated
changes in the key variables are believed to be more re-
liable than the rainfall estimates themselves (Benestad
2001).

Statistical downscaling is an empirical relationship be-
tween the large-scale climate anomalies and local climate
fluctuations based on historical data. There are numerous
ways to develop statistical downscaling models (Fowler
et al. 2007), but it is important to note that a statistical
downscaling approach assumes that any derived histori-
cal relationship also holds for the future (Wilby 1997).

Among various statistical downscaling models, mul-
tiple linear regression models built using gridcell values
of atmospheric variables as predictors for surface tem-
perature and precipitation are popular because of their
simplicity and explicit physical meaning (Benestad 2001;
Wilby 1998). Other more complex techniques include
using the principal components (PCs) of pressure fields
or geopotential height fields (Hanssen-Bauer and
Forland 1998; Kidson and Thompson 1998; Li and
Smith 2009) and more sophisticated methods such as
canonical correlation analyses (Busuioc et al. 2001;
Karl et al. 1990; Von Storch et al. 1993), singular
value decomposition (Zhu et al. 2008), and partial
least squares regression (Bergant and Kajfe-Bogataj
2005).

There is no doubt that the choice of predictors and the
associated domains plays a key role in statistical down-
scaling. An amount of sensitivity studies have indicated
that the choice of predictors and domains is critical for
future projections (Benestad 2001; Frias et al. 2006;
Schmidli et al. 2007). The commonly used predictors are
derived from circulation parameters, which could be
credibly simulated by GCMs, including SLP, geopotential
heights, horizontal winds at various levels, etc. For the
choice of predictor domains, its importance has been
indicated (Benestad 2001; Wilby and Wigley 2000), but
this issue of how to choose has not been systematically
addressed in the existing studies. The common approach
is to subjectively select a fixed domain that encompasses
the target location of the predictand (Oshima et al. 2002;
Timbal et al. 2003) or to select the best from several trial
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FIG. 1. (a) The 15 gauge stations used to represent North China (110°-122°E, 35°-40°N)
denoted by the rectangle. (b) Power spectrum for July—August rainfall. Peak over the dashed
line indicates the confidence level is > 80% against a red noise. (c) Total rainfall (mm) during
July—August (+’s) from 1951 to 2008 and its interdecadal variation with period exceeding

7 years (solid line).

domains that surrounds the target location with con-
trasting locations and spatial extensions (Benestad 2001,
2002). Benestad (2004) first proposed a quantitative rule
to determine the spatial extent of domain surrounding
the target position. It examined the correlation map be-
tween climatic parameter over the target position and
the surrounding areas and defined the domain according
to where the correlation goes to zero. Nevertheless, this
proposition only considers the effect of the local and
nearby systems but misses the remote predictive signals
that exert an influence via teleconnection. Because the
teleconnection is an atmospheric phenomenon explained
by spherical planetary wave propagation theory (Hoskins
and Karoly 1981); consequently, the preceding or con-
current teleconnection signals is useful for statistical pre-
dictions. Therefore, it is intuitive to identify potential
predictors over the global scale.

The aim of this work is to build a statistical down-
scaling model for NC summer rainfall using an objective
approach that objectively selects potential predictors
over the global scale. Given that there are significantly
distinct components in rainfall variability at the inter-
annual and interdecadal time scales, it is desirable to
develop a time-scale decomposition (TSD) approach to

obtain the downscaled rainfall totals by combining two
distinct downscaling models for the interannual and
interdecadal rainfall variability.

The framework of this study is organized as follows.
Section 2 introduces the data used in this work. Section 3
describes the proposed TSD approach to statistically
downscale NC summer rainfall. The downscaled results
from two distinct statistical downscaling models cali-
brated for the interannual and interdecadal rainfall
variability and their combined results for total rainfall
are presented in section 4. Key results by applying the
downscaling model to climate change simulations are
described in section 5. Finally, section 6 contributes to
a summary and discussion.

2. Data

Observed rainfall data were derived from 160-station
monthly rainfall dataset for China provided by the
China Meteorological Administration for the period
1951-2008. July and August (JA) is the primary rainy
season over NC, and the total rainfall series during JA
averaged over 15 gauge stations (Fig. 1a) within the re-
gion of 110°-122°E, 35°-40°N is designed to be predicted.
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Atmospheric data were extracted from the National
Centers for Environment Prediction (NCEP)-National
Center for Atmospheric Research (NCAR) reanalysis
dataset on a 2.5° X 2.5° grid (http://www.esrl.noaa.gov/
psd/data/gridded/data.ncep.reanalysis.html), including
SLP, 500-hPa geopotential height (Z500), 850-hPa me-
ridional wind (V850), etc. SST data were taken from
Hadley Center SST dataset I on a 1° X 1° grid (http:/
hadobs.metoffice.com/hadisst/). Several well-known climate
indices are employed as candidate predictors. The south-
ern annular mode index (SAMI) is defined as the differ-
ence in the normalized monthly zonal-mean SLP between
40° and 70°S (Nan and Li 2003), and the northern annular
mode index (NAMI) is defined as the difference between
35° and 65°N (Li and Wang 2003a), both are available
online (http://web.lasg.ac.cn/staff/ljp/dataset.html). The
North Atlantic Oscillation index (NAOI) is defined sim-
ilar to NAMI but regionally over the North Atlantic
sector from 80°W to 30°E (Li and Wang 2003b); it is also
available online (http:/web.lasg.ac.cn/staff/ljp/dataset.html).
The Nifio-3 index is used to represent the ENSO phe-
nomenon and available online (http://www.cpc.noaa.gov/
data/indices). The Pacific decadal oscillation index
(PDOI) is derived as the leading PC of monthly SST
anomalies in the North Pacific Ocean poleward of 20°N
(Zhang et al. 1997) and is available online (http:/jisao.
washington.edu/pdo/PDO..latest).

The GCM data were derived from three GCMs [Com-
monwealth Scientific and Industrial Research Organisa-
tion Mark version 3.5 (CSIRO Mk3.5), Centre National
de Recherches Météorologiques Coupled Global Cli-
mate Model, version 3 (CNRM-CM3), and Max Planck
Institute (MPI) ECHAMS)] selected from 21 GCMs
(Table 1) participating in the World Climate Research
Programme’s (WCRP’s) Coupled Model Intercompari-
son Project phase 3 (CMIP3) due to their simulation of
the predictors in the downscaling model. The outputs
from the twentieth-century simulation experiment
(20c3m) and climate change experiment based on the
A1B emission scenario of Intergovernmental Panel on
Climate Change (IPCC) Assessment Report 4 (AR4) are
utilized and they are available online (http:/www-
pemdi.llnl.gov/). Since these GCMs have different hori-
zontal resolutions, raw GCMs outputs were interpolated
into a resolution of 2.5° X 2.5° the same as NCEP re-
analysis data using bilinear interpolation method.

3. Methods

The spectrum analysis shows that there primarily exist
two peaks with periods of 2-3 years and 12-15 years in
the NC summer rainfall during 1951-2008 (Fig. 1b), in-
dicating strong interannual and interdecadal variability
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(Fig. 1c). A previous study (Lu 2003) indicated that
there are distinct relationships between the NC summer
rainfall and circulation anomalies at the interdecadal
and interannual time scales, respectively; the inter-
decadal variation does not modify the interannual vari-
ation and its physical mechanism. This finding motivates
us to build a TSD approach to downscale NC summer
rainfall by identifying respective forcing factors linked to
the interannual and interdecadal variability via distinct
statistical-downscaling models, respectively.

The main stages to establish and validate the TSD
model are shown in Fig. 2. Assume that the observed
rainfall series Y(¢) can be decomposed into the inter-
annual component Y ,(¢) and the interdecadal compo-
nent Y, (¢) by

Y(6) = Y, (1) + Y0 1)

To establish a TSD approach to downscale rainfall Y (¢),
the whole study period 1951-2008 (N = 58) was sepa-
rated into the calibration period 1951-90 (n = 40) and
independent validation period 1991-2008.

To calibrate models for the interannual and inter-
decadal rainfall variability, observed rainfall and indi-
vidual predictors are decomposed as the interannual
(variation less than 7 years) and interdecadal (variation
longer than 7 years) components by Fourier decomposi-
tion filtering using the data over 1951-90. A correlation-
based cross-validation stepwise regression (C_CVSR)
downscaling scheme documented in our previous paper
(Guo et al. 2011, manuscript submitted to J. Geophys.
Res.) is used to build the interannual model (IAM) and
interdecadal model (IDM) for the relationship between
rainfall and associated predictors at interannual and in-
terdecadal time scales, respectively. Taking the predicted
values Y 4 (1) and Y'D () together we obtain the predicted
rainfall totals over the training period 1951-90. Note that
the C_CVSR downscaling scheme primarily contains
two stages—that is, 1) the identification of potential
predictors over the global scale through correlation
analysis with rainfall, and 2) the selection of “optimal”’
predictors from the potential predictor set to formulate
regression equations by cross-validation-based stepwise
regression (CVSR) approach. See appendix A for some
details about the CVSR approach.

To validate the skill of the TSD approach to down-
scale NC summer rainfall, predictors selected by the
IAM and IDM based on the training period 1951-90
are decomposed as the interannual and interdecadal
components by Fourier decomposition filtering over the
whole period 1951-2008 (N = 58), and they are taken
into respective forecast equation (the IAM and IDM)
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TABLE 1. List of the 21 GCMs used in our study.
Horizontal
Name Research Group resolution Run
Bjerknes Center for Climate Research (BCCR) Bjerknes Center for Climate Research, Norway T63 runl
Bergen Climate Model version 2 (BCM2.0)
Canadian Centre for Climate Modelling and Analysis Canadian Centre for Climate Modeling and T47 runl
(CCCma) Coupled General Circulation Model, Analysis, Canada
version 3.1 (CGCM3.1) (T47)
CGCM3.1(T63) Canadian Centre for Climate Modeling and T63 runl
Analysis, Canada
CNRM-CM3 Meteo-France/Center National de Recherches T63 runl
Meteorologiques, France
CSIRO Mk3.0 CSIRO Atmospheric Research, Australia T63 runl
CSIRO MK3.5 CSIRO Atmospheric Research, Australia T63 runl
Institute of Atmospheric Physics (IAP) Flexible Global State Key Laboratory of Numerical Modeling for 2.8 X 2.8 runl
Ocean-Atmosphere-Land System Model gridpoint Atmospheric Sciences and Geophysical Fluid
version 1.0 (FGOALS1.0) Dynamics (LASG)/Institute of Atmospheric
Physics, China
Geophysical Fluid Dynamics Laboratory Climate Model =~ National Oceanic and Atmospheric Administration 2 X 2.5 runl
version 2.0 (GFDL CM2.0) (NOAA) Geophysical Fluids Dynamics
Laboratory, United States
GFDL_CM2.1 NOAA Geophysical Fluids Dynamics Laboratory, 2 X 2.5 runl
United States
Goddard Institute for Space Studies Atmosphere-Ocean  National Aeronautics and Space Administration 3 X4 runl
Model (GISS-AOM) (NASA) Goddard Institute for Space Studies,
United States
GISS Model E-H (GISS-EH) NASA Goddard Institute for Space Studies, 4X5 runl
United States
GISS Model E-R (GISS-ER) NASA Goddard Institute for Space Studies, 4X5 runl
United States
Institute of Numerical Mathematics Coupled Model, Institute for Numerical Mathematics, Russia 4 X5 runl
version 3.0 (INM-CM3.0)
Istituto Nazionale di Geofisica e Vulcanologia (Italy) Instituto Nazionale di Geofisica e Vulcanologia T106 runl
GCM version SXG (INGV-SXG)
Model for Interdisciplinary Research on Climate 3.2, Center for Climate Research Studies (CCSR) of T106 runl
high-resolution version [MIROC3.2(hires)] Tokyo University, Frontier of the Japan Agency
for Marine-Earth Science and Technology
(JAMSTEC), Japan
MIROCS3.2 medium resolution version CCSR of Tokyo University, Frontier of T106 runl
[MIROC3.2(medres)] JAMSTEC, Japan
MPI ECHAMS Max Plank Institute for Meteorology, Germany 1.5 X 1.5 runl
Meteorological Research Institute Coupled General Meteorological Research Institute, Japan T42 runl
Circulation Model, version 2.3.2 (MRI CGCM2.3.2)
NCAR Community Climate System Model, version 3 National Center for Atmospheric Research, T85 runl
(CCSM3.0) United States
Third climate configuration of the Met Office (UKMO) Hadley Center for Climate Prediction and 275 X 3.75 runl
Unified Model (HadCM3) Research/Met Office, United Kingdom
UKMO Hadley Centre Global Environmental Model Hadley Center for Climate Prediction and 1.25 X 1.875 runl

version 1 (HadGEM1)

Research/Met Office, United Kingdom

to calculate the downscaled interannual and interdecadal
rainfall components over the validation period 1991-2008.
Taking the predicted values Y ,(t) and YD(t) from the
IAM and IDM together, we obtain the predicted rainfall
totals over 19912008, which indicate the true predictive
skill of the TSD approach. We quantify the degree of
prediction uncertainty with the bootstrap approach (Stine
1985), and the confidence intervals associated with the
prediction are derived from the spread of 1000 bootstrap

samples with random replacement. See appendix B for
some details about the bootstrap approach.

4. Downscaling NC summer rainfall

In this section, we use C_CVSR downscaling scheme
to establish distinct models for relationships between dis-
tinct large-scale predictors and the NC summer rainfall at
the interannual and interdecadal time scales, respectively.



15 JANUARY 2012 GUO ET AL. 577

Y(),tefl,....nn+l,..,N}

Two components in variability

v

Time-scale decomposition

'

Calibration Validation
YO)=Y,(0)+Y,0)| | X,()=X, (0)+X, (;) X (1) =X, (0)+ X, (1)
(et | [E feadhte {0 o (0= ffqﬁ;(tt)g{l ()
_
_ v Y(0)= (X, )
Y,(0)=/,(X,(1) > Y,0)=fp(Xp(0)
y(t) £(Xp ) kledl,...q}te{n+l,...,N}
K IE,...qhte fl,..n} 1
Y(0)=Y,(0)+ Y, ()
— Y te {n+l,..,N}
Y()=Y,(0)+Y,(t)
tefl,...,n}
|Y(t),te{n+l,...,N}|

FIG. 2. Key stages in calibrating and validating the time-scale decomposition
downscaling model.

a. Calibrating the IAM correlation coefficients appear over these areas, as in-
dicated by the rectangles in Fig. 3. Potential predictors
The interannual correlation between the well-known associated with the interannual rainfall variability are
climate indices and NC summer rainfall are shown in calculated by averaging the values over the areas having
Table 2. It seems that the interannual components of correlation coefficients exceeding 0.4 (significant at the
the June NAOI (NAO,) and Nifio-3 index (Nifio3 ) are  0.01 level) within the marked rectangles, which are de-
significantly relevant, thus, these two indices are taken noted as Z, , —Z,,, and their details are listed in Table 3.
as candidate predictors for modeling the interannual It is clear that each of these nine potential predictors has
rainfall variability. To further seek other possible pre- a strong link with the NC summer rainfall with the sig-
dictors over global scale, interannual correlation of the nificant correlation coefficient at the 0.01 level.
detrended time series between SLP, V850, Z500, SST Figure 4a shows the whole process of CVSR screening
fields, and rainfall during 1951-90 is calculated (Fig. 3). procedure in calibrating the IAM. The root-mean-
Previous studies indicated that interannual rainfall is as-  square-error (RMSE) between the observed and cross-
sociated with the circulation systems including low-level validation estimated rainfall (CV_RMSE) is used to
meridional wind over East China (Huang et al. 1999), measure the predictive performance of potential pre-
mid-high circulation over Eurasia (Zhao and Song 1999), dictors at each step. Since the well-known teleconnection
the Mascarene high and Australian high (Xue 2005), and indices represent large-scale signals and possess explicit
the Somali Jet (Wang and Xun 2003); indeed, high physical meaning, the significantly related indices (NAO 5

TABLE 2. Interannual (interdecadal) correlation of detrended time series between July—August rainfall and several indices in June and
July-August (JA) during 1951-90.

SAMI NAMI NAOI PDOI Nifio-3 index
June —0.06(—0.83*) ~0.27(0.04) —0.37%%(0.19) 0.12(—0.66*) ~0.35%%(—0.52)
JA —0.09(—0.54%*) 0.08(—0.37) 0.24(—0.31) —0.25(—0.54*%) ~0.29(—0.12)

* Significant at the 0.05 level.
** Significant at the 0.01 level.
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FI1G. 3. Interannual correlation of detrended time series between July—August rainfall and (a),(b) sea level pres-
sure, (c),(d) 850-hPa meridional wind, (e),(f) 500-hPa geopotential height, and (g),(h) sea surface temperature in
(left) June and (right) July—August during 1951-90. Color shading indicates statistical significance at the 0.01 level.
Black rectangles indicate areas with high correlation coefficients.

and Nifio3,) are preferentially taken to be selected in  NAO,, but this decrease in quadratic error is not sta-
CVSR procedure. At step 1, Nifio34 is selected since it tistically significant in terms of the mean value and the
yields the smaller CV_RMSE value 0f 49.9 mm. Atstep2, variance value because the - and F-tests’ values are 0.33
the CV_RMSE shows a decrease after adding the and 1.1, less than the significant values of 1.4 and 1.6 at
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TABLE 3. Definitions of potential predictors for interannual model (IAM) and interdecadal model (IDM) and their correlation with
rainfall on the respective time scales for the period 1951-90.

Correlation (1951-1990)

Area of surrounding

Model Parameter Level Month rectangle Label Raw Detrended

IAM Sea level pressure Surface JA 25°-55°N, 90°-115°E VAN —0.57 —0.57
Sea level pressure Surface JA 35°-10°S, 60°-110°E AN —0.52 —0.52
Meridional wind 850 hPa June 45°-20°S, 60°-85°E AN 0.58 0.59
Meridional wind 850 hPa June 55°-75°N, 0°-40°E N -0.6 -0.6
Meridional wind 850 hPa JA 25°-47.5°N, 102.5°-125°E Zsa 0.64 0.65
Meridional wind 850 hPa JA 0°-25°N, 50°-70°E VN 0.62 0.62
Geopotential height 500 hPa June 35°-15°S, 45°-70°E VAN 0.51 0.5
Geopotential height 500 hPa June 55°-75°N, 335°-357.5°E N 0.62 0.62
Geopotential height 500 hPa JA 40°-55°N, 75°-100°E AN -0.59 -0.59

IDM Sea level pressure Surface June 25°S-10°N, 30°-60°E Zb —0.95 —0.94
Sea level pressure Surface JA 30°S-10°N, 30°-80°E Zyy —-0.93 —-0.92
Geopotential height 500 hPa June 5°S-20°N, 90°-140°E Z —0.94 —0.92
Geopotential height 500 hPa June 5°-35°N, 50°-90°E Z -0.92 -0.9

the 0.15 level. Among the well-known indices, only
Nino3, is selected into the regression equation. The ad-
ditional potential predictors (Z, , —Z,, ) are added to be
selected at the following steps. At step 3, the sequential
inclusion of Z,,results in a statistically significant re-
duction in the CV_RMSE value to the minimum of
39.3 mm (- and F-tests’ values are 1.5 and 1.62, ex-
ceeding the significant values); thus, Z; , is selected into
the regression equation as the second predictor. At step
4, further inclusion of Z, reduces the CV_RMSE value
to a minimum of 33.2 mm; however, this reduction in
quadratic error is not statistically significant, indicating
termination of the CVSR screening procedure.

As aresult of the CVSR screening procedure, Nifio3 o
and Z;, are finally selected into regression equation as
predictors X, and X, ,; in both cases, their regression
coefficients are significant at the 0.05 level. The IAM
is finally given in the form of

Y, (1) = —14X, (1) + 311X, (1), 2)
where Y, (¢) is the interannual component of rainfall at
tthyear (t =1, ...,40) over 1951-90, X, , (¢) and X, (¢)
are the rth-observed values of the normalized indices
X, and X,

Figure 5a shows the interannual variation of observed
and downscaled rainfall from the IAM (2). The IAM
provides a relatively accurate representation of obser-
vations, even for the independent verification period.
Table 4 summarizes this skill by showing the correlation
coefficients, RMSE and the ratio of RMSE to the cli-
matology rainfall (base period 1951-2008) between the
downscaled and observed values. The correlation co-
efficient and RMSE are 0.76 and 34.2 mm (11.1%) in
training period and 0.71 and 42.8 mm (13.9%) in in-
dependent validation period.

As a physically meaningful downscaling model, the
relationship between the predictors and rainfall should
be physically interpretable. In this regard, we explore
the possible physical linkage between the interannual
rainfall variation and predictors X, and X,, by using
the data from the whole period 1951-2008.

The first predictor X, is the interannual component
of the June Nifo-3 index, representing the interannual
variation in June SST over the mideastern tropical Pa-
cific. When there is anomalous warming (i.e., positive
X, , anomaly), large-scale anomalous cooling appears over
the western tropical Pacific, and this anomalous El Nifio
pattern could persist throughout JA (Fig. 6a). As an at-
mospheric Rossby wave response to the western Pacific
large-scale cooling in the western tropical Pacific, an
anomalous meridional tripole pattern is induced at the
low-midtroposphere over the western Pacific (Fig. 6b),
which is analogous to the Pacific-Japan or East Asia—
Pacific teleconnection pattern. Figures 6¢,d show the
horizontal and meridional circulation response as fol-
lows: anomalously strong WPSH locates at about 25°N,
and an anomalous northeasterly at its southern boundary
encounters northeastward cross-equator flows, giving rise
to anomalous convergence and ascent; at its northwestern
boundary, anomalous northward flows encounters the
southward flows induced by the cyclonic anomaly over the
North Pacific and northeast Asia, leading to anomalous
convergence and ascent at about 32°N. This anomalous
circulation structure, which is consistent with previous
studies (Huang and Wu 1989; Lu 2005; Nitta 1987), makes
NC under the influence of cold and dry flows descending
from Northeast Asia and suppresses precipitation occur-
ring over NC. In contrast, when there is an anomalous
cooling over the mideastern tropical Pacific in June (i.e.,
negative X, anomaly), the circulation described above
would reverse, favoring a wet summer over NC.
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The second predictor X, , represents the interannual
component of JA meridional wind over East China at
850 hPa, which is a regional predictor. Figure 7 shows
the interannual correlation of the detrended time se-
ries between the negative X,, and geopotential height
at 850, 500, and 200 hPa. It is evident that, associated
with — X, , there appears a quasi-barotropic anomaly
in geopotential height fields of an anticyclonic anomaly
over central Asia and Mongolia region and a cyclonic
anomaly over northwestern Pacific corresponding to
the anomalous northeasterly over East China. As a

result, the anomalous northeasterly currents prevent
warm and moist air being transferred to the NC, lead-
ing to a dry summer. Thus, NC summer rainfall is
closely associated with low-level meridional wind at
interannual time scale, and it modulates the transfer
of warm and humid air from South China Sea and
western Pacific. This result is consistent with the previous
study by Huang et al. (1999). Yet the underlying driver
for the quasi-barotropic pressure anomaly in low—
mid-high troposphere is not clear and deserves fur-
ther investigation.
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b. Calibrating the IDM

The procedure for calibrating the IDM is the same as
that for TAM. The June SAMI and PDOI show signifi-
cant correlations with rainfall at interdecadal time scale
(Table 2); thus, the interdecadal components of SAMI
(SAMp) and PDOI (PDOp) are considered as candi-
date predictors for IDM. Figure 8 shows the inter-
decadal correlation of detrended time series between
SLP, V850, 2500, SST fields, and rainfall over the training
period 1951-90; strongly correlated areas are denoted by
rectangles. Areas with correlation coefficients exceeding
0.8 within the rectangles are identified to calculate in-
dices forming potential predictors Z, ,-Z,,; their details
are listed in Table 3. It is evident that these four potential
predictors are strongly associated with the interdecadal
rainfall variation with correlation coefficients ranging from
—0.90 to —0.95, significant at the 0.01 level after adjusting
the degree of freedom.

Figure 4b shows the CVSR screening procedure for
calibrating the IDM. The significantly correlated well-
known indices (SAMp and PDOyp) are preferentially
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TABLE 4. Downscaled results obtained from the interannual
model (IAM) and interdecadal model (IDM) and their combina-
tion for total rainfall (total) in training period (1951-90) and in-
dependent test period (1991-2008). Cor. is correlation between
observation and prediction; p is the ratio of RMSE (mm) to the
climatology July—August rainfall during 1951-2008.

Training period Test period

Model  Cor. RMSE p Cor. RMSE p
IAM 0.76 342 11.1%  0.71 42.8 13.9%
IDM 0.95 16.2 52%  0.84 23.1 7.5%
Total 0.83 39.5 12.8%  0.82 45.8 14.8%

selected. At step 1, SAMp, is selected because of its
smaller CV_RMSE value. Then there is no significant
reduction in CV_RMSE value after sequential adding
PDOp at step 2 (- and F-tests’ values are 1.2 and 1.3,
respectively, less than the significant values of 1.46 and
2.0 at the 0.15 level). The additional potential predictors
Z,p=2,p are added to be selected at the next steps. At
step 3, together with SAMp, sequential inclusion of Z,
results in a statistically significant reduction in the
CV_RMSE value to the minimum (z- and F-tests’ values
are 2.4 and 2.05); thus, Z,, is selected as the second pre-
dictor. At step 4, the sequential inclusion of Z,, reduces
the CV_RMSE value to the minimum, but this reduction is
not statistically significant, leading to the termination of
the CVSR selecting procedure. SAMp and Z,, are se-
lected into regression equation until now. However, the
regression coefficient of SAMp, is not significant at the 0.05
level; the SAMp, is excluded. Finally, only Z, , is taken as
the predictor X, for the IDM given by

Y, (1) = 320.5 — 47X, (0), 3)

where Y (¢) is the interdecadal component of rainfall at
tth year (=1, ...,40) over 1951-90, and X, (¢) is the
tth-observed values of the normalized X ,.

Figure 5b shows the interdecadal variation of ob-
served and downscaled rainfall from Eq. (3). Table 4
shows the correlation coefficients, RMSE, and the ratio
of RMSE to the climatology rainfall. They are 0.95 and
16.2 mm (5.2%) in training period and 0.84 and 23.1 mm
(7.5%) in test period, indicating a relative high skill in
predicating the interdecadal variability using X,

We now give an interpretation of why the predictor
X|p, [i-e., the interdecadal component of June SLP over
southwestern Indian Ocean (10)] is associated with the
interdecadal rainfall variation. In the past 50 years, X,
has a pronounced increasing trend (Fig. 9 d). Figure 9a
shows the interdecadal correlation of the detrended time
series between X, and June surface temperature field,
revealing the positive association between X, and the
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dicate significance at the 0.05 level. (c) Markers C and A denote anomalous cyclone and anticyclone, respectively.

surface temperature over western tropical Pacific and
eastern tropical 10 (i.e., the warm pool). Since the trop-
ical IO has undergone anomalous warming during the
past decades as indicated in previous studies (Ding et al.
2010; Du and Xie 2008; Li et al. 2008; Zhou et al. 2009a,b),
itis likely to trigger the multidecadal increase in SLP over
the southwestern IO via an anomalous zonal circulation.
On the other hand, the ocean is a slowly varying medium
and the warming anomaly over the warm pool may be
responsible for the persistent X, ; anomaly and anomalous
circulation over East Asia throughout the following JA.
Figure 9b presents the associated June surface circu-
lation with positive X,, anomaly. Associated with SLP
increase over the southwestern 10, there appear anom-
alous northward cross-equatorial flows at about 50°~70°E
longitudes. Meanwhile, the anomalous warming over the
warm pool favors an anomalous northerly appearing over
East China as reported by previous studies (Li et al. 2010;
Zhou et al. 2009b). The anomalous northerly encounters
the enhanced cross-equatorial southerly, intensifying the
convergence in the intertropical convergence zone over

the western Pacific. The enhanced convergence and
ascent strengthens the meridional circulation, which is
clearly seen in a latitude—vertical section averaged at
100°-140°E longitudes (Fig. 9c). The anomalous meridi-
onal circulation leads NC under a descent control and a
shortage of moisture, leading to a dry summer. Figure 9d
shows the normalized time series and linear trends of X
as well as the interdecadal rainfall component, clearly
indicating their out-of-phase relationship.

¢. Downscaled total summer rainfall over NC

It is straightforward to obtain the downscaled total
rainfall by summing up downscaled values from IAM
and the IDM. Figure 5c compares the downscaled and
observed NC summer rainfall. Because the IAM and
IDM are derived using data over the training period
1951-90, the predicted values after 1990 therefore in-
dicate the true predictive skill. In general, the perfor-
mance of the TSD approach evident in the training
period is maintained during the subsequent verification
period. Compared to the observed climatology rainfall
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of 320.5 and 282.8 mm during 1951-90 and 1991-2008
periods, the downscaled results provide an accurate re-
production of 320.4 and 280.4 mm, respectively. Table 4
summarizes downscaling skill by showing some quan-
titative measurements. The correlation coefficients
between the downscaled and observed rainfall are all
highly significant at the 0.01 level, 0.83 for the training
period, and 0.82 for the test period. RMSE (the ratio of
RMSE to the climatology rainfall) is 39.5 mm (12.8%) in
training period and 45.8 mm (14.8%) in test period. All of
the results indicate that the TSD approach performs well
on downscaling NC summer rainfall.

On the other hand, we have also compared the down-
scaling skills between the TSD approach and the single
model (non-time-scale decomposition) based on C_CVSR
downscaling scheme by Guo et al. (2011, manuscript
submitted to J. Geophys. Res.). It is found that the TSD
approach has a better skill in terms of higher correlation
(0.82 versus 0.59) and a lower RMSE (45.8 versus
60.8 mm) between downscaled and observed rainfall in
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test period 1991-2008. This progress in prediction dem-
onstrates the superiority of the TSD model.

5. Application to climate change simulations

We apply the downscaling models to predictors de-
rived from GCMs’ simulations for both the present-day
and future climate. Before the application, we evaluate
GCMs’ simulation for predictors used in the IAM and
IDM and select the well-performed GCMs to be utilized.
This examination involves 21 GCMs in CMIP3, and only
three GCMs (CSIRO Mk3.5, CNRM-CM3, and MPI
ECHAMS) are selected finally on the basis that they are
able to simulate the long-term-mean values and linear
trends of the predictors well. Table 5 lists the results of
the simulations of all predictors in present-day and fu-
ture climate under A1B emission scenario from three
selected GCMs and their ensemble mean. With the
GCM-generated predictors, rainfall is estimated for
the present-day climate (1951-99) and the near-future cli-
mate (2010-24 and 2035-49) under A1B emission scenario.

To downscale GCMs’ outputs to NC summer rainfall,
we update the IAM and IDM with observed rainfall and
NCEP data from 1951 to 2008. GCM-generated pre-
dictors are placed in the updated forecast equations to
make predictions. Figure 10 compares observed, GCMs
directly predicted, and downscaled long-term-mean rain-
fall for 1951-99, 201024, and 2035-49. The downscaled
value for the future is accompanied by 50% and 95%
confidence intervals (horizontal lines in Fig. 10), which
indicate the uncertainty associated with the downscaling
model as estimated by bootstrap approach.

For predictions under the present-day climate (1951—
99), all of the raw GCMs obviously underestimate the
rainfall, while the downscaled values represent slight
overestimates. Compared with the raw GCMs’ simula-
tions, in all cases, the downscaled values have a smaller
percentage error: CSIRO MKk3.5 (+3% cf. —12%),
CNRM-CM3 (+14% cf. —=25%), MPI ECHAMS (+17%
cf. —21%), and ensemble mean (+11% cf. —19%).

For the future projection, simulations from CNRM-
CM3, MPI ECHAMS, and the ensemble mean directly
project a slow decrease in rainfall until 2010-24, fol-
lowed by a slight increase (approaching the present-day
state) until 203549, while CSIRO Mk3.5 indicates an
opposite projection. However, the downscaled values
show different projections from the raw GCMs’ esti-
mates. Except for the downscaled values based on MPI
ECHAMS that indicate a continuous decrease in rain-
fall, other downscaled values indicate a slight increase
until 2010-24, followed by a slight decrease (still wetter
than the present-day state) until 2035-49. The result in-
dicates that there is a less chance for large changes to
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happen, such as severe long-term droughts or floods
(relative to the present-day state) for the next 40 years
under A1B emission scenario. The wetting condition
predicted by a majority of downscaled values is consis-
tent with the prediction from the regional climate model
(Gao et al. 2008), giving rise to more confidence to this
projection.

6. Summary and discussion

In this paper, we have proposed a TSD approach to
downscale NC summer rainfall through modeling the
interannual and interdecadal rainfall variability by the
IAM and IDM, respectively. The interannual compo-
nents of June Nifio-3 index and JA meridional wind over
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East China were linked to the interannual rainfall vari-
ability by the IAM, while the interdecadal component of
SLP over the southwestern 10 was linked to the inter-
decadal rainfall variability by the IDM. Both the IAM
and IDM show good skills to downscale the interannual
and interdecadal rainfall variability in NC summer
rainfall. The downscaled total rainfall can be obtained
by summing up the two downscaled components from
the IAM and IDM. The results indicated that the TSD
approach has a relatively high predictive capability for
NC summer rainfall.

We have also applied the downscaling model to GCM-
generated predictors and estimated the long-term rain-
fall conditions for both the present-day (1951-99) and
the near-future climates (2010-24 and 2035-49) under
A1B emission scenario. For the present-day climate, in
all cases, the downscaled values showed smaller percent-
age errors than did the raw GCMs’ simulations. This su-
periority indicated that the downscaled predictions are
more reliable for representing the present-day climate, thus
implying a better representation of the future climate. For

future projection, a majority of downscaled values indicated
a slight increase in rainfall, different from the raw GCMs’
projection. The result also indicated that there would be less
chance for large changes to happen, such as severe long-
term droughts or floods (relative to the present-day state)
for the next 40 years under A1B emission scenario.

We point out that the downscaling models in this
study were calibrated based on NCEP-1 reanalysis data.
Since the NCEP-1 data may have systematic errors in
the period before 1970 (Greatbatch and Rong 2006),
there is a need to verify the reliability of the proposed
downscale models using other reanalysis data. We have
repeated the same analysis by using 40-yr European
Centre for Medium-Range Weather Forecasts (ECMWF)
Re-Analysis (ERA-40) data (1958-2002) extended with
NCEP-1 reanalysis data (2003-08). For IAM, the results
based on these two distinct datasets were almost the
same; for IDM, the area of predictor selected based on
ERA-40 data relatively shrunk, and the downscaling
skill was slightly worse. Anyhow, the downscaling models
calibrated from these two reanalysis datasets showed
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TABLE 5. Observed and GCM-simulated predictors (for definitions of predictors, see text) in terms of climatology values [X, , (°C), X, ,
(ms Y and X,p (hPa)] and linear trend [X, , (°C yr b, X, , (m s yrYand X,p (hPa yr )] during 1951-99 for the present-day climate

and GCM-simulated climatology value during 2010-24 and 2035-49 for changed climate under A1B emission scenario.

1951-99 2010-24 2035-49
Observation/GCMs Predictors Trend Climatology Climatology Climatology
Observation XA —0.002 0.0
Xy —0.007 0.0
Xp 0.034 1015.15
CSIRO MK3.5 XA 0.004 0.0 -0.028 -0.011
X, 0.0 0.0 0.069 —0.007
Xp 0.0 1015.00 1014.72 1014.84
CNRM-CM3 XA 0.006 0.0 -0.173 0.076
Xoa —0.002 0.0 0.011 -0.023
Xp 0.006 1014.49 1014.48 1014.39
MPI ECHAMS N —0.001 0.0 0.082 0.029
X —0.002 0.0 0.012 —0.004
Xp 0.010 1014.33 1014.41 1014.61
Ensemble mean XA 0.003 0.0 —0.040 0.032
X —0.001 0.0 0.031 -0.012
Xp 0.006 1014.61 1014.54 1014.61

similar skills to some extent, suggesting reliability of our

downscaled results.

One should keep in mind that the reliability of down-
scaled future projection is strongly dependent on the
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errors were found in terms of the long-term-mean value,
linear trend, and interannual variability. Therefore, the
improvement of GCMs’ simulations is important for
statistical downscaling technique to obtain reliable pro-
jections.

It should be noted that the downscaled method in this
paper only represented the changes in rainfall that linked
to the changes in circulation. Previous studies have in-
dicated the necessity to include the humidity-related pa-
rameters in projecting future rainfall changes because
moisture would markedly change corresponding to future
changes in radiation forcing (Benestad 2001; Charles
et al. 1999; Crane and Hewitson 1998; Karl et al. 1990;
Spak et al. 2007; Von Storch et al. 1993). In the present
analysis, some changes in humidity may be accounted
for by changes in the circulation field as they may affect
the direction of moisture transfer; however, they would
not account for large-scale changes in humidity asso-
ciated with global warming. The latter effect is difficult
to incorporate here because GCMs are unable to supply
reliable simulations of the humidity-related predictor that
was selected by correlation analysis.

Like other statistical downscaling models, the under-
lying stationary hypothesis may be questionable. Previ-
ous studies have emphasized the importance of assessing
the robustness of the relationship in the future (Paul et al.
2008; Wilby and Wigley 1997). The statistical downscal-
ing models that were linked with the principal climate
modes try to test the persistence of the principal climate
modes under changed climate conditions; however, this
task cannot be performed in our downscaling model be-
cause it seeks predictors based on correlation analysis.
Nevertheless, it is noteworthy that the relationship es-
tablished in this paper is physically interpretable, which
strengthens our confidence in the downscaled results for
future.

Finally, it should be cautious to interpret the down-
scaled rainfall projections for future because the pro-
jections inevitably contain a degree of uncertainty. A
consistent projection with additional types of down-
scaling models or regional climate models wound pro-
vide more reliability. Future work will make projection
under other emission scenarios, such as A2 and B1, to
obtain various rainfall conditions under distinct emis-
sion scenarios.
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APPENDIX A

Cross-Validation-Based Stepwise Regression
Approach

The CVSR approach is a “forward” stepwise screen-
ing procedure to select the “optimal” predictors from
the potential predictor set. It employs leave-one-out
cross validation to select the robust predictors and reduce
the false possibility. The root-mean-square error between
observation and cross-validation estimates (CV_RMSE)
is taken as the criterion to evaluate the performance of
potential predictor.

The CVSR method can be described in a general form
using a series of iteration steps:

P
Y() = ¢ + ; B.X,(1) + £(0), (A1)

where Y(¢) is the predictand for =1, ..., n year train-
ing period; X,(t) is the tth observation of the predictor
X, selected from candidate predictors Z,, ...,Z by
the ith step in forward stepwise regression screening;
c and B, are model parameters; and &(t) is the error of
the estimated model (A1). Specifically, model (A1) is
established by the following p < m steps.

e Step 1: Regress the predictand Y(¢) onto each of
the potential predictors Z, (l e {1, ...,m}) to obtain
1-predictor regression equatlon f The performance
of each 1-predictor regression equatlon is measured by
CV_RMSE at step 1

Z Yo - f, 17,01

(A2)

CV_RMSE, =
1

where regression equation f. _, is fitted by Z (])
(Ge{l,...,n}\{t}), thatis, all Observations excludmg
the rth one. If CV_RMSE, is the smallest CV_RMSE
achieved at step 1, that is, CV RMSE, mlnl L)
{CV_RMSE, } the potential predlctorZ is selected
as the first predlctor that is, X, = Z
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o Step 2: Regress Y (t) onto X, and each of the remain-
ing m-1 potential predictors Z (12 e{l,....m\{i;}),
that is, all potential predictors except Z [to write
2-predictor regression equation f The performance
of each 2-predictor regression equation is measured by
CV_RMSE at step 2

CV_RMSE; = \/%;{Y(t) — [ X0, Ziz(t)l}z,
(A3)

where regression equation f _, is fitted by X,(j),
Z, (NG AL, ....n}\{1}). Now, if CV_ RMSE, is
the smallest CV RMSE achieved at step 2, that

,,,,,

moreover, CV RMSE is 51gn1ﬁcantly smaller than
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CV_RMSE,, the potential predictor Z is selected
as the second predictor, that is, X, = Z ; otherwise,
stop selecting new predictors. To stat1stically test
the significant reduction in CV_RMSE, relative to
CV_RMSE,, 1 and F tests are utilized to test the
quadratic errors series between the observation
and cross-validated estimates obtained at step 2
[i.e. {Y(t) = f,_[X, (). X,(01}*.t € {1, ....n}, where
f,_, is fitted by X, (j). X, (1) (je{1,...,n}\{r})] and
at step 1 [i.e., {Y(t) f]ﬂ[X (t)]} tef{l,...,n},
where f; _ is fitted by X (]) (jedl,. n}\{t})] in
terms of the mean value and the variance.

Generally, at step k, assume that there is k — 1 predic-

tors X, =Z7.,...,X,_, =27 selected from original po-
k=1 .

tential predictors Z,, ..., 72, and the associated smallest

CV_RMSE at step k —1is

CV_RMSE, | =
i =1

where regression equation fl . 1is fitted by X, (j), .
Xuo(i)-Zi ()G € {1\ fr}).

Step k: Regress Y(f) onto X, ..., X, , and each
Z, (lk ce{l,....mIN\{i, iy, ... ,0_ 1}) of remaining m-
(k -1 potennal predictors to write k-predictor regression
equation f The performance of each k-predictor re-
gression equation is measured by CV_RMSE at step k

CV_RMSE,

L XY ~ XD Xy 0.2, O

(AS)

where regression equation f; _, is fitted by X7 -,
X(k_l)(j),Zik(j),(j €{l,....n}\{r}). If CV_RMSE, is
the smallest CV_ RMSE achieved at step k, that
and moreover (6\Y% RMéEk is 51gn1ﬁcantly smaller
than CV_RMSE, |, the potential predictor Z; is se-
lected as the kth predictor, that is, X k:Zik; other-
wise, stop selecting new predictors. The ¢ and F tests
are utilized to statistically test the quadratic errors
series between the observation and cross-validated
estimates obtained at step k [ie, {Y() — fi_,
(X, (0)..... X, ()]}, € {1, ...,n}, wheref, _,isfitted by
X, X (D, Ge{l, .. n}\{t})] and at step k-1
lie, {Y(©) = fr__ [X,©),.... X, ()] Vore{l,...,n},
where f,_, , is fitted by X,(j),..., kfl(j),

Z (Y@ -

fi X0 Xy (0. 2, (O] (A4)

(Gedl,...,
variance.
Finally, for all of the selected predictors via the CVSR
procedure, F test is used to test their regression co-
efficients. The insignificant predictors wound be excluded,
and the remaining predictors are used to fit the multi-
linear-regression equation with the least squares method.

n}\{t})] in terms of the mean value and the

APPENDIX B

Bootstrapping Prediction Intervals for Linear
Regression Model

In general, a linear regression model is defined as

)4
Y() = k; BX, (D) + ¢, (B1)

where g, is residual error. Least squares fit to the n-yr
training data {[X(?), Y()]: t = 1, ..., n} yields

p
() = ,;kaka). (B2)

It is validated by using independent data {[(X(z + h),
Y+ h)]:h=1,..., N-n}N > n). To quantify the
uncertainty of downscaled rainfall using Eq. (B2) re-

latedto X; (¢ +h)(i=1,...,p;h=1,...,N—-n), we
need to establish the cumulative distribution function G
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for the confidence interval of the prediction error
Y(+h)—Y(+h). A100(1 — @)% prediction intervals
for Y (¢ + h) is given by

[Y(t + h) + G Y a2),Y( + h) + G (1 — al2)].
(B3)

However, as the distribution F of the residual variability
g, in Eq. (B1) is unknown, we cannot obtain the distri-
bution G analytically. We apply a bootstrap-resampling
procedure to estimate the distribution G.

First, the residuals e, = Y(¢) — Y (1) are calculated
with Eq. (B2). For an 1ndependent test data {X(r + h),
h =1, ..., — n}, predicted value Y(t+h)=

k=1 B X+ h). The error distribution F is estimated
by the empirical distribution of residuals, which we
denote F,,. This is then used to construct bootstrapped
samples of the form

{IX(@0), Y*()1}, [X(t + ), Y*(t + h)],

t=1,...,n,
with Y*(1)=Y(t) + &* and Y*(t+h)=Y(t+h)+e*
where g and £* are independently sampled from F),, that
is, they are randomly sampled with replacement from the
set of residuals {e,, ...,e }. The superscript * denotes
a value constructed for a particular bootstrap sample.

Each bootstrapped sample is used to calculate a sim-
ulated estimate 3 &, predicted value Y*(¢ + h), and pre-
dicted error &% = Y*(t + h) — Y¥(r+ h). The empirical
distribution of s’j‘ which we denote G, is then an esti-
mate of the distribution of the bootstrap prediction errors.
It can be used as the distribution function G. Therefore,
a 100(1 — a)% prediction interval for Y(t + h) can be
estimated as

[Y(t+h) + G Y aR),Y(t+ h) + G 1 — aR)].

In our downscaling rainfall analysis, estimates of the
95% confidence interval of predicted rainfall for 1000
bootstrapping samples using independent test data over
1991-2008 are shown as dashed blue curves in Fig. Sc.
Further, bootstrapping estimates of the uncertainty (50%
and 95% confidence intervals for 1000 bootstrap repli-
cations) of downscaled future rainfall are shown in Fig. 10.
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